
DynTriPy: A Python Package for
Detecting Dynamic Earthquake
Triggering Signals
Naidan Yun1, Hongfeng Yang2, and Shiyong Zhou*1

Abstract

Cite this article as Yun, N., H. Yang,
and S. Zhou (2020). DynTriPy: A Python
Package for Detecting Dynamic
Earthquake Triggering Signals, Seismol.
Res. Lett. 92, 543–554, doi: 10.1785/
0220200216.

Supplemental Material

Long-term and large-scale observations of dynamic earthquake triggering are urgently
needed to understand the mechanism of earthquake interaction and assess seismic haz-
ards. We developed a robust Python package termed DynTriPy to automatically detect
dynamic triggering signals by distinguishing anomalous seismicity after the arrival of
remote earthquakes. This package is an efficient implementation of the high-frequency
power integral ratio algorithm, which is suitable for processing big data independent of
earthquake catalogs or subjective judgments and can suppress the influence of noise
and variations in the background seismicity. Finally, a confidence level of dynamic trig-
gering (0–1) is statistically yielded. DynTriPy is designed to process data from multiple
stations in parallel, taking advantage of rapidly expanding seismic arrays to monitor
triggering on a global scale. Various data formats are supported, such as Seismic
Analysis Code, mini Standard for Exchange of Earthquake Data (miniSEED), and
SEED. To tune parameters more conveniently, we build a function to generate a data-
base that stores power integrals in different time and frequency segments. All calcu-
lation functions possess a high-level parallel architecture, thoroughly capitalizing on
available computational resources. We output and store the results of each function
for continuous operation in the event of an unexpected interruption. The deployment
of DynTriPy to data centers for real-time monitoring and investigating the sudden acti-
vation of any signal within a certain frequency scope has broad application prospects.

Introduction
It has been widely reported that earthquakes can be triggered
by transient stress changes related to the passage of seismic
waves; this phenomenon is known as dynamic triggering
(e.g., Hill et al., 1993; Gomberg and Johnson, 2005; Velasco
et al., 2008; Peng et al., 2010, 2012; Pollitz et al., 2012; van
der Elst et al., 2013; Aiken et al., 2018). Systematic investiga-
tions of dynamic triggering can help us explore the responses
of faults to stress disturbances, and these responses can be
leveraged to monitor temporal variations in stress and thus
assess earthquake hazards. Moreover, the mechanisms of
earthquake interactions are critical for advancing our under-
standing of earthquake physics (Hill and Prejean, 2007;
Brodsky and van der Elst, 2014). In the Coulomb failure
model, brittle failure occurs when a dynamic stress pertur-
bation elevates the stress state on a fault plane, exceeding
the frictional strength. Therefore, remote earthquakes with
larger dynamic stress perturbations should have stronger
triggering abilities (Gomberg and Davis, 1996; Gomberg et al.,
2001; Wu et al., 2011; Aiken and Peng, 2014; Wang et al., 2015;
Miyazawa, 2016). However, a large number of observations

have demonstrated that other characteristics of seismic wave-
fields, such as the back azimuth, dominant frequency, and
types of surface and body waves, also affect the dynamic
triggering response (e.g., Prejean et al., 2004; Brodsky and
Prejean, 2005; West et al., 2005; van der Elst and Brodsky,
2010; Hill, 2012; De Barros et al., 2017). Moreover, the source
attribute, such as rupture direction, can influence the wave-
field and hence the triggering intensity, although this effect
is still debated (e.g., Gomberg et al., 2001; Jiang et al., 2010).
At present, it remains difficult to determine a unified mecha-
nism of dynamic triggering or to exactly describe the dominant
mechanism in different regions (e.g., Gomberg et al., 1997;
Cocco and Rice, 2002; Brodsky et al., 2003; Perfettini et al.,
2003; Brodsky and Prejean, 2005; Johnson and Jia, 2005;
Gonzalez-Huizar and Velasco, 2011; Shelly et al., 2011;
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Hill, 2012; Delorey et al., 2015). To address these questions,
many investigations of dynamic triggering utilizing rapidly
expanding seismic arrays are needed in a variety of regions.

Because of their inception (Hill et al., 1993), many methods
have been developed to detect dynamic triggering by identify-
ing triggered earthquakes and then estimating the significance
of variations in the rate of seismicity, such as the β statistic
(e.g., Matthews and Reasenberg, 1988; Reasenberg and
Simpson, 1992). Traditional detection algorithms strongly
depend on the accuracy and completeness of earthquake cata-
logs, which correspond to the network coverage (e.g., Hill et al.,
1993). Local earthquakes during teleseismic waveforms are
often manually picked, but this process is time-consuming and
sometimes subjective (e.g., Peng et al., 2010). Automatic meth-
ods for identifying microearthquakes have been applied to
observe dynamic triggering (e.g., Miyazawa and Mori, 2005;
Delorey et al., 2015; Li et al., 2017; Miyazawa, 2019; Tang et al.,
2020); among these methods, the matched filter technique is
the most popular (Gibbons and Ringdal, 2006; Peng and
Zhao, 2009; Yang et al., 2009), for which an even distribution
of template events in the research area is critically important.
However, sufficient templates are difficult to obtain in low-
seismicity areas, and a large number of templates demand
extensive computational times and resources. The convolutional
neural network (CNN) has also been widely employed for phase
picking and earthquake detection (Perol et al., 2018; Kong et al.,
2019; Zhou et al., 2019). The basic idea of the CNN is to optimize
the parameters of a neural network model based on a training
dataset of earthquakes and then identify events in other wave-
forms using the trained model. The current development of
CNNs is limited by the requirement for a substantial amount
of training data, and normally, the network model needs to be
retrained when changing the study region (Zhu et al., 2019).

To overcome the dependence on the number of local earth-
quakes in seismicity rate evaluations, Yun et al. (2019) pro-
posed the high-frequency power integral ratio (HiFi) algorithm
using the difference in high-frequency energy before and dur-
ing teleseismic waves (RE) to detect anomalous seismicity. For
example, many studies reported the dynamic triggering of
small earthquakes by the 4 April 2010 M 7.2 Baja California
earthquake in the Geysers geothermal area, California (Aiken
and Peng, 2014; Yun et al., 2019). If 5 hr before the P-wave
arrival is selected as the background time window Tb, the
manual detection of local events can become time-consuming.
As an alternative, the HiFi method calculates the high-
frequency energy directly. The high-frequency (25–35 Hz)
energy in the time window Te aligned with teleseismic waves
is richer than that in the time window Tb (Fig. 1a,b). Moreover,
to reduce interference due to noise and address disturbances
related to background seismicity, high-frequency energy
changes among the same time windows on other days (RB)
are also evaluated. For example, the high-frequency energy

(a)

(c)

(b)

(d)

Figure 1. Detection of dynamic triggering for the 4 April 2010
M 7.2 Baja California earthquake in the Geysers geothermal area
in California. (a,b) Spectrogram and broadband seismogram on 4
April 2010 at station GDXB in the Geysers area. The waveforms
are downloaded from the Northern California Earthquake Data
Center (NCEDC, 2014; see Data and Resources). Horizontal
dashed lines in (a) mark the boundaries of the high-frequency
range used to detect local seismicity. Dashed and solid lines in
(b) show the arrival times of the Pwave and a surface wave with a
speed of 5 km=s for the Baja California earthquake. Tb repre-
sents the 5 hr time window before the P-wave arrival, and Te

represents the time window between the arrival times of surface
waves with speeds of 5 and 2 km=s. (c,d) Same as (a,b) but on 3
April. Tb and Te are the same time windows as those on 4 April.
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in the two time windows Tb and Te on the day before the Baja
California earthquake is almost the same (Fig. 1c,d). Finally, a
unique confidence level (CL) of detection (0–1) is obtained
from the distribution of numerous RB values on different back-
ground days. HiFi was demonstrated to be effective in the
Geysers region after a dynamic triggering analysis for hundreds
of remote earthquakes (Yun et al., 2019).

Compared with traditional methods, HiFi needs to process
only continuous waveforms, a convenient way to comprehen-
sively monitor dynamic triggering in various regions for many
stations. However, the original script was made for demonstra-
tion using one station in a particular region. We need to imple-
ment this algorithm in a generic usage scenario for it to be
suitable for drastically expanding seismic arrays. In addition,
we initially worked with Seismic Analysis Code (SAC) files,
but the mini Standard for Exchange of Earthquake Data
(miniSEED) format is commonly used for the storage and
transmission of big data. Taking a continuous seismogram cov-
ering one day as an example, a miniSEED file requires half the
storage and has a faster loading speed than a SAC file (Table 1).
Hence, we expect HiFi to handle more compatible data formats.

In this article, we introduce a robust Python package
(DynTriPy) to detect dynamic triggering based on the HiFi
method. This package is designed for processing data at differ-
ent stations simultaneously with SAC, miniSEED, and SEED
data formats. All calculation functions possess a high-level par-
allel architecture. To tune parameters conveniently, a database
containing high-frequency power integrals is generated first.
Moreover, the results of each function are stored for continu-
ous operation in the event of an unexpected interruption. The
DynTriPy package is capable to embed in to data centers for
real-time monitoring and investigating the sudden activation
of any signal within a certain frequency range, such as a trig-
gered tremor. We will first show the details of how we imple-
ment the HiFi algorithm and then discuss the computational
efficiency and prospects of the DynTriPy package.

Implementation
Python, one of the most popular open-source programming
languages, has a global community with millions of developers.
In addition, a growing number of mature Python packages can

be used directly for scientific computing and geophysics.
Therefore, we develop a generic package completely written
in Python, termed DynTriPy, to identify the triggering of
remote earthquakes utilizing continuous waveforms (Fig. 2).

Four classes of data files are required to run DynTriPy: a
catalog of remote earthquakes, continuous waveforms, a list
of seismic stations, and instrument response files (Fig. 3).
The paths of data sources and parameters make up the input
file in JSON format. The users need only to specify the values
in a template (Fig. S1, available in the supplemental material to
this article), a convenient way to manage the input file. For
instance, if we apply DynTriPy to data from the Southern
California Seismic Network (CI), we would need to configure
the paths in the “data_source” part of the input file. As
DynTriPy is designed for the network-based detection of trig-
gering within a large dataset of remote earthquakes, both a list
of stations (“station_file,” Fig. 3b) and a catalog encompassing
the origin times of remote earthquakes (“remote_earthquake_-
catalog,” Fig. 3e) are needed. The time windows Tb and Te and
high-frequency range f l–f h are also attributed in the catalog,
which can be customized for different events. For example, we
define Tb as 5 hr before the P-wave arrival and the start and
end times of Te as the arrival times of waves with speeds of 5
and 2 km=s, respectively. The high-frequency range is 5–
15 Hz. In addition, records of daily continuous waveforms
(“waveform_path,” Fig. 3c) and a summary file of instrument
responses (“response_file,” Fig. 3d) should be prepared because
instruments can be upgraded when processing long-term data
(e.g., several decades). Hence, we match the daily waveforms
and corresponding responses in the summary file.

In DynTriPy, we design a class named Triggering with three
functions while implementing HiFi to acquire the final CL
values to evaluate whether triggering has occurred (Fig. 3a).
An instance of the Triggering class should be defined first
by passing the input file (“input.json,” Fig. S1) as the argument,
for example “tri=Triggering(input.json)” (Fig. S2). To avoid
repeated passing of the same parameters among different func-
tions, we assign all parameters the initial attributes of the
instance shared by all functions. By operating the functions
of “tri” one by one, we generate the power integral database,
logarithm ratios, and CL values. The final and intermediate
results of each function are saved to enable work to continue
after an unexpected interruption. Next, we will introduce the
data used, the details regarding the operation, and the output
files of these functions.

Continuous waveforms

Origin times of the 
remote earthquakes

DynTriPy Dynamic triggering or not 

Figure 2. Basic flow of the DynTriPy package.

TABLE 1
Comparison between Seismic Analysis Code (SAC)
and Mini Standard for Exchange of Earthquake Data
(miniSEED) Files Recording the Same Continuous
WaveformData at Station ADOwith a Length of 24 hr
and a Sampling Rate of 40 Hz

Data Format File Size (MB) Load Time (s)

SAC 13.8 0.063

miniSEED 7.4 0.045
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Generating the power integral database:
net_database
The most time-consuming step in HiFi is computing the power
integral ratios in f l–f h that correspond to the windows Tb and
Te of a remote earthquake for N background days. The choice
of parameters [Tb, Te, f l, f h, N] is necessary and may vary in a
considerable way for different regions to ensure reliable detec-
tion results (Yun et al., 2019). Therefore, for the efficient imple-
mentation of HiFi, redundant calculations during the parameter
adjustment phase should be minimized. The first step of HiFi is
to select the continuous waveform data in Tb and Te and then
calculate the power spectral density (PSD), recorded as PSDb

and PSDe, respectively. For the application of HiFi in the
Geysers region (Yun et al., 2019), we set Tb to 5 hr before the
P-wave arrival, which is time-consuming if local events are man-
ually picked. Moreover, our previous study focused on instanta-
neous triggering, and thus, Te was set to cover the teleseismic
wavetrain (Fig. 1). However, triggering has been reported as
delayed by a few hours or even days after the arrival of teleseis-
mic waves (e.g., Brodsky, 2006; Peng et al., 2015; Johnson and
Bürgmann, 2016). Therefore, to detect noninstantaneous trig-
gering, the value of Te may span a large range. Furthermore,
PSDb and PSDe are integrated over the high-frequency range
f l–f h to obtain Ib and Ie, respectively, and RE is calculated by

EQ-TARGET;temp:intralink-;df1;53;93R � log10

�
Ie
Ib

�
: �1�

The values of f l and f h depend on the local environment and
may vary significantly from region to region. Even within the
same region, the background noise level in such a frequency
range may change over time. In addition, we need to calculate
the RB values by selectingN days before and after the date of the
remote earthquake. However, if we implement the earlier oper-
ations for each new set of parameters [Tb, Te, f l, f h, N], a vast

Input

- ‘station_file’: path of the 
   station list file

- ‘waveform_path’: path of 
   continuous waveform files

- ‘response_file’: path of 
   the summary instrument 
   response file

- ‘remote_earthquake_catalog’:
   path of the remote earthquake 
   catalog file 

1. Parameters Input file

Input

2. Data source

continuous_waveform
├── 2009
│   ├── 20090101
│   │   ├── 20090101.CI.ADO.--.BHZ
│   │   ├── 20090101.CI.ALP.--.BHZ
│   │   ├── 20090101.CI.CWC.--.BHZ
│   │   └── ...
│   ├── 20090102
│   │   └── 20090102.CI.ADO.--.BHZ
│   │   ├── 20090102.CI.ALP.--.BHZ
│   │   ├── 20090102.CI.CWC.--.BHZ
│   │   └── ...
│   └── ...
│       └── ...
├── 2010
│   ├── 20100101
│   │   ├── 20100101.CI.ADO.--.BHZ
│   │   ├── 20100101.CI.ALP.--.BHZ
│   │   ├── 20100101.CI.CWC.--.BHZ
│   │   └── ...
│   ├── 20100102
│   │   └── 20100102.CI.ADO.--.BHZ
│   │   ├── 20100102.CI.ALP.--.BHZ
│   │   ├── 20100102.CI.CWC.--.BHZ
│   │   └── ...
│   └── ...
│       └── ...
└── ...
    └── ...
        └── ...

net, sta, loc, cha
CI, ADO, --, BHZ
CI, ALP, --, BHZ
CI, CWC, --, BHZ
...

station.csv

time, fl, fh, Tb_begin, Tb_end, Te_begin, Te_end
2009-01-03T19:43:50.650Z, 5, 15, 2009-01-03T14:58:03.554Z, 2009-01-03T19:58:03.554Z, 2009-01-03T20:23:15.728Z, 2009-01-03T21:22:23.345Z
2009-01-03T22:33:40.290Z, 5, 15, 2009-01-03T17:47:51.459Z, 2009-01-03T22:47:51.459Z, 2009-01-03T23:13:01.435Z, 2009-01-04T00:12:03.153Z
2009-01-15T07:27:20.290Z, 5, 15, 2009-01-15T02:40:12.479Z, 2009-01-15T07:40:12.479Z, 2009-01-15T08:00:15.567Z, 2009-01-15T08:49:38.483Z
2009-01-15T17:49:39.070Z, 5, 15, 2009-01-15T13:00:09.176Z, 2009-01-15T18:00:09.176Z, 2009-01-15T18:13:21.136Z, 2009-01-15T18:48:54.236Z
2009-01-19T03:35:18.840Z, 5, 15, 2009-01-18T22:48:13.178Z, 2009-01-19T03:48:13.178Z, 2009-01-19T04:08:13.057Z, 2009-01-19T04:57:34.382Z
...

remote_earthquake_catalog.csv

data_file, PZ_file
20090101.CI.CHF.--.BHZ, CI.ADO.BHZ.--.0.PZ
20090101.CI.CLC.--.BHZ, CI.ALP.BHZ.--.0.PZ
...
20090509.CI.CHF.--.BHZ, CI.CHF.BHZ.--.1.PZ
20090509.CI.CLC.--.BHZ, CI.CLC.BHZ.--.1.PZ
...

sacPZ.csv

Generate power 
integral database

Calculate 
logarithm ratios

Estimate 
confidence levels

DynTriPy

Define instance 
of Triggeirng

DynTriPyTT OutputOutput

For each station: 

For each station: 

  

For each station: 
- a folder containing files of 
   power integral values.  

- a file of R
E
 values;

- a file of R
B
 values;

[- a catalog in  background days].

- a file of confidence levels and 
  triggering judgments;
[- a file of matched ratios].

(a)

(b)

(c)

(d)

(e)

Figure 3. Schematic diagram representing the usage of the
DynTriPy package. (a) Summary of the input, workflow of
DynTriPy, and output. Strings in single quotation marks are the
labels in the “data_source” part of the input file (Fig. S1).
(b) Example of the station list file, named “station.csv.” The
station list contains four columns separated by commas: “net”
(network code), “sta” (station code), “loc” (location identifier),
and “cha” (channel code). (c) Directory tree structure of an
example continuous waveform folder, named “continuous_-
waveform.” Daily data files are stored in date folders, which are
archived into folders by year. (d) Example of the summary file of
instrument response files, named “sacPZ.csv.” Each line of the
summary file includes two strings separated by commas:
“data_file” (file name of the continuous waveform) and the
corresponding “PZ_file” (path of the instrument response).
(e) Example of the remote earthquake catalog file named
“remote_earthquake_catalog.csv,” consisting of “time” (origin
time), “fl” (value of f l ), “fh” (value of f h), “Tb_begin” (begin
time of Tb), “Tb_end” (end time of Tb), “Te_begin” (begin time
of Te), and “Te_end” (end time of Te). PZ, poles and zeroes.

546 Seismological Research Letters www.srl-online.org • Volume 92 • Number 1 • January 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/92/1/543/5209762/srl-2020216.1.pdf
by Chinese Univ Hong Kong user
on 13 February 2022



number of calculations are repeated. For instance, when enlarg-
ing the Tb window from 3 to 5 hr, the power integral within the
first 3 hr before the teleseismic arrival will be calculated again.
Therefore, we integrate the PSD in different time and frequency
segments for continuous seismograms and store the results in a
database. For different parameter values, we simply fetch the
target power integrals from the database to calculate the RE and
RB values.

The power integral database is generated by the net_data-
base function with a high-level parallel architecture, for exam-
ple, “tri.net_database(p=5)” (Fig. S2), in which the argument
“p” is the number of processes. First, we record a list containing
the target dates, namely, M1 days before and M2 days after the
dates of distant earthquakes according to the catalog. The
power integrals of these days must be computed (Fig. 4a).
The scope [M1, M2] can be modified by the users in the input
file (“days,” Fig. S1). If the scopes of different earthquakes over-
lap, the same day is recorded only once. Then, we loop over
each station and calculate the power integrals from the con-
tinuous waveforms. The results are stored into different sub-
folders in the output path configured in the input file under
“database_path.” For each station, the computations for differ-
ent days are completely independent. Therefore, we parallelize
these computations by assigning the tasks of different days to
different processors and saving the results into individual files
(Fig. 4b). The parallel framework is constructed by Python’s
built-in multiprocessing package (also adopted for the other

parallel computing in our algorithm). Separating the results
of different days can avoid excessively large files and prevent
conflicts caused by multiple processes writing to the same file.
In addition, to reduce unnecessary computing, we check
whether the results of that day already exist before assigning
the job.

To introduce the details of each process, we show an exam-
ple of the data at station ADO in the CI network on 1 January
2009, downloaded from the Southern California Earthquake
Data Center (SCEDC, 2013; see Data and Resources). The
waveforms are loaded by ObsPy (Beyreuther et al., 2010), a
commonly used Python package for analyzing seismological
data in SAC, miniSEED, SEED and other formats. We remove
the mean and trend and split the waveforms evenly into time
segments with a length of 30 s (Fig. 4c). The time segment
length can be adjusted in the input file (“time_segment”).

(a)

(b)
(c)

(d)

Figure 4. Workflow of the net_database function. (a) Basic
framework of net_database, where “database” is the value of
“database_path” set in the parameter file shown in Figure 2.
(b) Specific operation for each station, such as station ADO.
(c) Data processing for 1 January 2009. The raw data are split by
the dashed lines into multiple 30 s segments. We obtain the
power integral values in frequency ranges of 5–10, 10–15, and
15–20 Hz for each segment through (d). (d) Power integral
calculation for the raw data of the 15:21:30–15:22:00 segment.
Dashed lines mark the integral frequency ranges.
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We estimate the PSD of each segment using Welch’s method
by dividing the data into overlapping intervals and averaging
the spectrograms of these intervals (Welch, 1967; Fig. 4d). The
reciprocal of the time length of the interval determines the
frequency resolution of the PSD. We fix the interval as 512
samples in the net_pi function, corresponding to a frequency
resolution of ∼0:1 Hz for sampling rates of ∼10–100 Hz.
Because the PSDs calculated from raw waveforms and real
ground motions may be different, especially when processing
long-term data that might be recorded by different instru-
ments, we prefer to remove instrument responses. In our code,
the data are already in the frequency domain after obtaining
the PSD, so we directly divide the PSD by the square of the
response function to acquire the ground-motion PSD.
According to the summary response file, the response function
is built by loading the values of “sensitivity,” “A0,” “zeros,” and
“poles” in the poles and zeroes (PZ) file matched with the
waveform data. Next, we integrate the PSD within frequency
segments of 5–10, 10–15, and 15–20 Hz, and the results are
written into the output file with the start time of the time seg-
ment (Fig. 4c). The minimum (min), segment length (step),
and maximum (max) of the frequency segments are configured
by the users in the input file as the value of “frequency_seg-
ment” in the format of [min, step, max].

Calculating logarithm ratios: net_ratio
After generating the power integral database, we implement
the net_ratio function to calculate RE and RB values in parallel.
The process count “p” can also be set by the user.

It is straightforward to calculate RE from equation (1) based
on a real remote earthquake catalog (Fig. 5c). We provide a
utility named gen_time_windows to generate Tb and Te and
automatically output a catalog (e.g., Fig. 3e) with the origin
time and the start and end times of Tb and Te (Fig. S3). Tb

is a fixed time range before the P-wave arrival, and Te is
bounded between two surface waves with specific speeds.
The length of Tb, the surface wavespeeds, the raw catalog of
remote earthquakes with source locations, a reference point

ba
ck

gr
ou

nd
_d

ay
s=

[6
0,

 6
0]

time, fl, fh, Tb_Begin, Tb_End, Te_Begin, Te_End
2009-03-06T10:50:29.410Z, 5, 15, 2009-03-06T06:00:37.288Z, 2009-03-06T11:00:37.288Z, 2009-03-06T11:12:44.792Z, 2009-03-06T11:46:07.866Z
2009-03-19T18:17:40.470Z, 5, 15, 2009-03-19T13:29:42.891Z, 2009-03-19T18:29:42.891Z, 2009-03-19T18:47:00.621Z, 2009-03-19T19:31:00.846Z
...

time, fl, fh, Tb_Begin, Tb_End, Te_Begin, Te_End
2009-01-05T10:50:29.410Z, 5, 15, 2009-01-05T06:00:37.288Z, 2009-01-05T11:00:37.288Z, 2009-01-05T11:12:44.792Z, 2009-01-05T11:46:07.866Z
...
2009-05-05T10:50:29.410Z, 5, 15, 2009-05-05T06:00:37.288Z, 2009-05-05T11:00:37.288Z, 2009-05-05T11:12:44.792Z, 2009-05-05T11:46:07.866Z
2009-01-18T18:17:40.470Z, 5, 15, 2009-01-18T13:29:42.891Z, 2009-01-18T18:29:42.891Z, 2009-01-18T18:47:00.621Z, 2009-01-18T19:31:00.846Z
...
2009-05-18T18:17:40.470Z, 5, 15, 2009-05-18T13:29:42.891Z, 2009-05-18T18:29:42.891Z, 2009-05-18T18:47:00.621Z, 2009-05-18T19:31:00.846Z
...

(b)

power integral 
database Station list

L
oo

p 
ov

er
 th

e 
st

at
io

ns

Catalog of 
remote earthquakes

background_ratio

Yes

No Yes

Loop over  
remote earthquakes 

and generate 
corresponding 
background 

catalogbg = True
Catalog in 

background 
days exists 

No
Utilize 

background
catalog

Utilize 
remote 

earthquake 
catalog

remote_earthquake_ratio

background_catalog.csv

time, f_min, f_max, Tb_Begin, Tb_End, Te_Begin, Te_End
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Figure 5. Workflow of the net_ratio function. (a) Basic framework
of net_ratio, where “remote_earthquake_ratio” and “back-
ground_ratio” are the values of “RE_path” and “RB_path,”
respectively, set in the input file (Fig. S1). (b) Correspondence
between remote earthquakes and events on background days.
(c) Computing the logarithm ratio of each remote earthquake
(RE) at station ADO. The output file consists of four columns: the
origin time, which is the same as that in the catalog (“time”), Ib
(“Ib”), Ie (“Ie”), and the logarithm ratio between Ib and Ie
(“ratio”).
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in the research area, and the output file are required as param-
eters passed to the gen_time_windows function.

However, for RB, we first need to build a virtual earthquake
catalog (Fig. 5a). For the 2009-03-06T10:50:29.410 event and
the parameter “background_days” in the input file (Fig. S1)
assigned the range [60, 60], we generate 60 virtual events both
before and after the date of the remote earthquake (Fig. 5b). The
background events have the same attributes, such as the origin
time, start and end times, and f l and f h of the remote event,
except for the date. We save the virtual catalog as the “back-
ground_catalog” path. We then compute RB using equation (1)
on each background day. If the background catalog file exists, in
the event of an accidental interruption, we do not generate it
again when rerunning net_ratio. Evaluating RE or RB depends
on whether the argument “bg” is “False” or “True,” such as
“tri.net_ratio(bg=False, p=5)” to compute RE (Fig. S2).

Then, we estimate RE or RB according to the catalog of
remote earthquakes or background days at each station, which
are stored into separate files named with the station name
(Fig. 5a). The output path is established in the input file,
termed “RE_path” or “RB_path.” For example, when calculat-
ing RE at station ADO based on equation (1), two power inte-
gral groups in f l–f h of Tb and Te are fetched from the database
and averaged as Ib and Ie, respectively (Fig. 5c). To speed up
this fetching process, we load the target data files in the data-
base as Pandas DataFrame objects (McKinney, 2010; The

Pandas Development Team, 2020), which is a 2D size-mutable
data structure with labeled axes. The Pandas Python package
can analyze large datasets by importing and filtering the data
conveniently and efficiently. We filter the row and column
names of the DataFrame corresponding to the time and fre-
quency segments, respectively, to acquire the target integral
values. The earlier operations for different events are per-
formed in parallel.

Estimating the CL of dynamic triggering: net_cl
Finally, we analyze the distribution of RB and compare it with
RE to obtain the CL of dynamic triggering using the net_cl
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 ...
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Figure 6. Workflow of the net_cl function. (a) Basic framework of
net_cl, where “confidence_level” is the value of “cl_path” set in
the input file (Fig. S1). (b) Specific processing for each station to
obtain the confidence level (CL). (c) Matching of RE and the
logarithm ratios on background days (RB) at station ADO. In the
output file, the columns of “remote_earthquake_ratio” and
“background_day_ratio” represent RE and RB, respectively.
(d) Acquisition of CL values and triggering judgments using the
matched logarithm ratios. (e) CL estimation for the 2009-03-
06T10:50:29.410Z earthquake. The histogram shows the
probability density of RB values. Fitting the histogram to a normal
distribution, we obtain the probability density function (PDF; gray
solid line). Black solid and dashed lines mark the mean RB and RE
values, respectively.
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function, for example, “tri.net_cl(p=5)” (Fig. S2). The CL val-
ues for different distant earthquakes at the same station are
computed in parallel on “p” different processors and saved
as separate files (Fig. 6a).

For each station, we associate the RE and RB values, which
are stored separately at “RE_path” and “RB_path” (Fig. 6b).
The files comprising the RE and RB values are loaded as
Pandas DataFrame objects, whose row names are the origin
times of remote earthquakes and background seismicity,
respectively. For each remote earthquake in the DataFrame
of RE, we fetch RB in parallel on the target background days
by filtering the rows of the RB DataFrame, for example, the
2009-03-06T10:50:29.410Z and 2009-03-19T18:17:40.470Z
events at station ADO (Fig. 6c). The associated ratios at differ-
ent stations are output into an individual subfile in the path
“matched_ratio_path” (Fig. S1). The existence of a file is
checked before association to avoid duplicate calculations
(Fig. 6b). Then, the matched ratios are used to calculate the
CL values in parallel (Fig. 6d). We fit the RB values to a normal
distribution, acquiring the probability density function (PDF)
at the same time. CL is the integral of the PDF from minus
infinity to RE. For the 2009-03-06T10:50:29.410Z event, the
CL result is approximately 0.5 because the RE value is close
to the mean of RB (Fig. 6e). If we wish to plot and output
the figure as in Figure 6e for each remote earthquake, we sim-
ply set “figure_path” (Fig. S1) in the input file to store the
figures; otherwise, the path is configured as “None.” Finally,
according to the “threshold” of the CL value set in the input
file, we mark the triggering result in the final output file with

“1” or “0” corresponding to whether the CL value is greater or
less than the threshold, respectively (Fig. 6d).

Discussion
Computational efficiency
We conduct some experiments to demonstrate the perfor-
mance of our DynTriPy package, especially the improve-
ment in the computational efficiency by utilizing the paral-
lel architecture. The test is performed at station ADO in
southern California considering the remote earthquakes that
occurred from May 2009 to January 2010. The catalog of remote
earthquakes is acquired from the Advanced National Seismic
System (U.S. Geological Survey, Earthquake Hazards Program,
2017; see Data and Resources) with magnitudes ≥ 6:5,
distances ≥ 1000 km, and depths ≤ 100 km. We download all
the continuous BHZ-channel waveform data from 2009 and
2010 for station ADO with a sampling rate of 40 Hz, and we
acquire the corresponding PZ instrument response file from
SCEDC. The experiments are performed on a workstation with
two CPUs (IntelR XeonR E5-2695 v3 at 2.30 GHz) possessing 28
cores in total.

We configure the parameter file (Fig. S1), utilize five proc-
esses to generate the power integral database, and activate
other functions to obtain the CLs for five remote earthquakes
with 120 background days (Fig. S2). To just meet the needs for
calculating RB, we set the “days” of the database to be the same
as the “background_days.” The average runtime of the whole
triggering detection process is approximately 5 min (Fig. 7).
As the numbers of remote earthquakes and background days
increase, the computing time rises nearly linearly. Processing
30 remote earthquakes with 240 background days requires only
approximately 15 min.

In addition, we test the runtime when more processes are
used, such as 10 or 15. For 30 distant earthquakes with 120
background days, the computing time is reduced by ∼1=2
(from ∼600 to ∼340 s) as the number of processes increases
from 5 to 10. Limited by the input/output (I/O) speed, the
computational efficiency improvement slows down as the
number of processes increases to 15. However, the computing
time is still ∼3=4 of that using 10 processes (from ∼340 to
∼250 s). The parallel architecture significantly improves the
computational efficiency.

The runtime with more data can be estimated according
to the previous computational efficiency test. If dynamic
triggering is analyzed over 10 yr at station ADO with ∼400
remote earthquakes (magnitudes ≥ 6:5), it will take approxi-
mately 250 × 400=30 s ≈ 0:9 hr when utilizing 15 processes
and 120 background days. Among the output files, the power
integral database occupies most of the storage space, that is,
∼830 MB with a time interval of 30 s for 10 yr at one station.
The time consumption and the output data size increase
linearly with the number n of input stations, that is, with
complexity O�n�.

Figure 7. Computational efficiency of the DynTriPy package.
Using different numbers of processors (p) to perform the com-
putation in parallel, we test the runtimes of the triggering
detection process for different numbers of remote earthquakes
and N values.
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Application prospects
Our DynTriPy package allows the detection of dynamic trig-
gering for a large dataset of remote earthquakes based on
seismic arrays and enables the long-term investigation and
large-scale monitoring of dynamic triggering on a global scale.
Sufficient observations are essential to explore the potential
factors affecting triggering phenomena to understand the
physical mechanism of dynamic triggering. In addition, by
automatically supplementing the power integral database regu-
larly every day, the CL value can be evaluated in a very short
time after the occurrence of a remote earthquake, realizing the
near-real-time monitoring of triggering. As this code supports
the miniSEED format, DynTriPy can directly use continuous
waveform databases from large data centers, making it possible
to implement real-time processing. Long-term and real-time
monitoring is helpful for keeping track of the stress state of
a study region and thus assessing the seismic hazards therein.
For instance, Van der Elst et al. (2013) suggested that dynamic
triggering is more evident in areas with increased seismicity
induced by industrial activities because fault systems reach a
critical state due to fluid injection. Therefore, dynamic trigger-
ing could provide early warning for earthquake swarms in
regions with induced earthquakes. Utilizing our package to
examine more remote events, we can obtain a continuous
evaluation of the stress state and thus advance our understand-
ing of the influence of fluid injection.

In addition to dynamically triggered earthquakes, our pack-
age can be used to detect triggered nonvolcanic tremors within
a characteristic frequency range of ∼2–8 Hz (e.g., Shelly et al.,
2011; Yang and Peng, 2013; Peng et al., 2015). Previous studies
suggested that teleseismic waves from the 3 November 2002
Mw 7.8 Denali fault earthquake triggered significant tremors
near Parkfield, California (Gomberg et al., 2008; Peng et al.,
2008, 2009). Rich energy within ∼2–10 Hz and tremor signals
are visible at the same time as surface waves during the Denali

fault earthquake at station PKD (Fig. 8a,c, Peng et al., 2008).
We apply the DynTriPy package to detect these tremor signals.
Still taking Tb and Te as the time windows 5 hr before the P-
wave arrival and the time between the arrivals of surface waves
with speeds of 5 and 2 km=s, respectively, we calculate the RE

and RB values within 3–9 Hz (Fig. 8a,b). Considering 120 back-
ground days, the RE value (1.089) is obviously larger than the
mean of the RB distribution (Fig. 8d). The final CL value is
0.979, which is larger than the popular threshold of 0.977
(Yun et al., 2019), indicating that these high-frequency signals
were triggered by the Denali fault earthquake. Furthermore, we
apply our package to the data from stations PHP and PSM, ∼7
and ∼14 km from station PKD, respectively (Fig. S4). The
mean CL value among these three stations is 0.978, suggesting
that the high-frequency signals during teleseismic waves are
not noise but tectonic signals. In addition, if the frequency inte-
gral range is set as 25–35 Hz, the RE value at station PKD is
smaller than zero, indicating the absence of regularly triggered
local earthquakes. Hence, we can determine that the 2002
Denali fault earthquake triggered local tectonic tremors near
Parkfield. These applications to the Geysers (Yun et al.,
2019) and Parkfield areas demonstrate that our DynTriPy
package can effectively identify and distinguish dynamic trig-
gered earthquakes and tremors.

(a)

(b)

(c)

(d)

Figure 8. Detection of a triggered tremor for the 3 November
2002 Mw 7.8 Denali fault earthquake near Parkfield, California.
(a–c) Spectrogram, raw seismogram, and band-pass-filtered
seismogram of the 2002 Denali fault earthquake from station
PKD, channel HHN, downloaded from NCEDC. The symbols in (a,
b) are the same as those in Figure 1a,b. (d) Same as Figure 6e but
for the 2002 Denali fault earthquake. The continuous waveforms
used to generate the power integral database are from station
PKD, channel BHN, accessed from NCEDC.

Volume 92 • Number 1 • January 2021 • www.srl-online.org Seismological Research Letters 551

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/92/1/543/5209762/srl-2020216.1.pdf
by Chinese Univ Hong Kong user
on 13 February 2022



Even if the impact of dynamic stress is not considered, the
variation in activity within a certain frequency segment during
some diurnal period can also be discovered through a compari-
son with the same period on other days. This general applica-
tion can be widely used to observe the temporal variations in
specific signals of different frequency ranges, including man-
made noise. For example, we employ the DynTriPy package to
process the continuous waveforms from 1 January to 17 April
2020 recorded at stations in Hubei (ENH) and Beijing (BJT),
China, to investigate the changes in noise due to the city
lockdowns and holiday extension due to the Coronavirus
Disease-2019 pandemic. The output results of the net_database
function clearly show that the noise levels in the frequency
ranges of 5–10, 10–15, and 15–20 Hz were all drastically
reduced in the city of Enshi in Hubei, China (Fig. 9a), but
the noise levels significantly increased after the lockdown
was over. The main frequency range of noise energy at station
BJT is 5–15 Hz, probably corresponding to one specific type of
human activity.

Conclusion
We designed a Python package named DynTriPy based on the
HiFi algorithm to detect dynamic triggering by distinguishing
abnormal seismicity. The HiFi method is suitable for pro-
cessing big data independent of earthquake catalogs or subjec-
tive judgments and can suppress the influence of noise and

variations in the background seismicity. Finally, a CL of
dynamic triggering (0–1) is statistically yielded.

The parameters and data sources (the station name, con-
tinuous waveform records, instrument response, and catalog
of remote earthquakes) are collected in one input file, which
is convenient for users to adjust and manage. Our package
consists of one Triggering class with three functions. A power
integral database of continuous waveforms is generated first
utilizing the net_database function. Furthermore, the loga-
rithm ratios of high-frequency energy (RE) for remote earth-
quakes and background days (RB) are calculated by the
net_ratio function. Finally, RE and the corresponding RB values
are matched to evaluate the CLs using the net_cl function.

The DynTriPy package supports the simultaneous process-
ing of data from multiple stations and in different formats,
such as SAC, miniSEED, and SEED. Generating a database
to store power integrals in different time and frequency seg-
ments makes the tuning of parameters more convenient. In
addition, repeated computations for different time windows,
frequency ranges, and background days are eliminated. The
results of each function are output and reserved to enable con-
tinuous operation in the event of an unexpected interruption.
To take advantage of multiple computational cores, we con-
struct a high-level parallel architecture for all computing func-
tions. When running 15 processes, calculating the CLs for
30 remote earthquakes takes only ∼5min. In addition to
dynamically triggered earthquakes, our package can be used
to detect triggered tremors or variations in other signals with
characteristic frequency ranges. The intermediate results of
generating a power integral database can also be used to mon-
itor the temporal variations in noise energy. We expect to
deploy DynTriPy in data centers for the real-time monitoring
of dynamic triggering.

Data and Resources
The continuous waveform data and catalog of remote earthquakes
are obtained from the Southern California Earthquake Data Center
(doi: 10.7909/C3WD3xH1), Northern California Earthquake Data
Center (doi: 10.7932/NCEDC), and Advanced National Seismic
System of the U.S. Geological Survey (doi: 10.5066/F7MS3QZH). Our
DynTriPy package is available at https://github.com/yunndlalala/
dynamic_earthquake_triggering (last accessed September 2020).
Supplemental material for this article includes Figures S1–S4.
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