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The Longmaxi Formation in the southern Sichuan Basin is an important target for shale gas
exploration and development. The characteristics and stages of structural development
significantly impact shale gas preservation and enrichment. Taking the Longmaxi
Formation in the Yanjin–Junlian area of the southern Sichuan Basin as an example and
based on the results of surface and underground structural analysis, fluid inclusion tests,
apatite fission track experiments, and burial-thermal evolution history analysis, a
comprehensive study of the development characteristics and structural stages of the
Longmaxi Formation was carried out, and an evolution model was developed. (1) The
Longmaxi Formation of the Yanjin–Junlian area has been affected by multistage structural
movements and exhibits structural compounding and superposition corresponding to
different stages. The formation of surface tracks of the folds and faults has been affected by
multidirectional extrusion stresses of the near SN, NE, and near EW. There are three stages
of underground faults in the Longmaxi Formation, and the strikes are nearly EW, NE, and
nearly SN. (2) Three distribution intervals for the homogenization temperature ranges of
fracture fillings are 161–195°C, 121–143°C, and 74–105°C. The apatite thermal history
simulation reveals that the Longmaxi Formation experienced three stages of tectonic
movement after its formation. (3) There were clearly three stages in the structural
development of the Longmaxi Formation in this area: the late Jurassic–Palaeocene
(55 ± 5–38 ± 2Ma), Eocene–early Miocene (38 ± 2–15.5 ± 3.5 Ma), and late Miocene-
present (15.5 ± 3.5 Ma–present). Thus, a compound fracture system with superimposed
structural deformations in different directions and at different stages formed in the study
area. (4) A model for the stages and development of structural tracks in the Longmaxi
Formation was established in conjunction with structural analysis and geomechanical
theory. The results have guiding significance for the evaluation of shale gas preservation
conditions and accumulation in the study area.
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INTRODUCTION

In recent years, shale gas exploration and development has
become an active area in global oil and gas exploration. North
America has taken the lead in realizing efficient commercial
exploitation of shale gas, which has changed the global oil and
gas supply pattern and promoted the development of shale gas
geological theory (Melchin and Holmden, 2006; Li et al.,
2019a; Fan et al., 2020a; He et al., 2021; Ma et al., 2021;
Zhang et al., 2022). China is among the countries that have
implemented the exploration and development of shale gas
resources outside North America, and the shale in the
Southern Marine Silurian Longmaxi Formation is the main
strata for shale gas exploration and development (Nie and Jin
2016; Shi et al., 2016; Nie et al., 2018, 2020; Zhu et al., 2022).
Compared with marine shale in North America, marine shale
in southern China has undergone structural activities at
multiple stages over a long-term evolution history,
resulting in complex preservation conditions for shale gas.
A high total organic carbon (TOC) content, high brittleness,
high formation pressure, and structural preservation
conditions are known to be the dominant factors affecting
the enrichment and high production of shale gas fields
(Ambrose et al., 2010; Hou et al., 2020; He et al., 2021;
Song et al., 2021; Li et al., 2022a; 2022b; Li 2022a; 2022b).
Structural preservation conditions include indicators such as
folds, faults, fractures, structural styles and deformation
strengths. Structural preservation conditions control the
enrichment degree of shale gas, which is one of the
determining factors in shale gas exploration and
development (Curtis, 2002; Jarvie et al., 2007; Qie et al.,
2021; He et al., 2022a; 2022b). Among these conditions, the
development of faults and fractures is an important index
parameter for shale gas preservation (Hooker et al., 2018;
Cheng et al., 2021). Faults control the development of
fractures, which may become escape channels for shale gas.
Second- and third-level faults have a destructive effect on oil
and gas preservation conditions, while fourth-level faults can
be used as channels for oil and gas migration. When the
fracture strike and the current horizontal principal geostress
intersect at a high angle, the high fault sealing performance
inhibits the escape of shale gas (Wang et al., 2018, 2019; Xu
et al., 2020; Shan et al., 2021; Wang and Wang 2021). In
addition, the dominant orientation and development degree
of the fractures formed in different structural evolution stages
are different, and their effects on the enrichment and gas
bearing properties in the later stage are also different. The
structural stage matching the shale gas accumulation stage is
of great significance for the enrichment of shale gas. Faults
and fractures are important structural traces and the result of
the comprehensive action of the palaeotectonic stress field
(Yan et al., 2009; Li et al., 2012; Zhang et al., 2020a; 2020b).
The analysis of structural traces is of great significance in
terms of studying the action mode of regional tectonic stress
fields, exploring the relationship between tectonic
deformation and the stress state, and studying the
mechanism of tectonic formation.

The Yanjin–Junlian area is located at the intersection of the
southern Sichuan fold belt and the Loushan fault-fold structural
belt, close to the edge of the basin. The Longmaxi formation
shale is an important exploration layer, but shale gas exploration
has not made an important breakthrough in recent years.
Compared with the adjacent Changning block, its gas content
and single-well production are poor, and the structural
preservation conditions may be an important factor.
Therefore, starting with macro geological analysis (similar
outcrops, cores, and geophysical interpretation) and micro
experimental tests (apatite fission track analysis, inclusion
temperature analysis, and burial-thermal evolution history)
(Li et al., 2020), this paper analyses the formation stage and
evolution model of the structure in the study area to provide
guidance for shale gas exploration in this and similar basin
margin areas.

GEOLOGICAL BACKGROUND

The Yanjin–Junlian area is located at the southern edge of the
Sichuan Basin, at the intersection of the southern Sichuan fold
belt and the Loushan fault-fold structural belt (Figure 1A). The
Yanjin–Junlian area is adjacent to the Dawan Anticline and the
Tianningsi Structure in the east of the basin, the Xunsifang and
Junlian Nose Structures in the area west of the basin, the Datianba
Anticline in the area south of the basin, and the Luochang,
Fujiang Syncline, and Tiancun Anticline in the area north of
the basin. The eastern and western parts of the study area have
been regionally affected by the long-distance transmission of
extrusion stress originating from the Jiangnan Xuefeng Uplift
and Longmen Mountains, respectively, whereas the northern and
southern parts have been affected by compression from the
Huayingshan–Qingshanling Fault Zone and the Daloushan
Structural Belt, respectively (Fan et al., 2018, 2020b; Xie et al.,
2019; Wang et al., 2020). Different complex structural tracks have
been constrained and superimposed on each other.

During the sedimentary period of the Longmaxi Formation
in the early Silurian, the entire southern Sichuan area was
constrained by the central Sichuan Palaeohigh and the
central Guizhou Palaeohigh, creating an overall continental
shelf sedimentary environment. The Longmaxi Formation is
generally divided into upper and lower sections (Yang et al.,
2017; Jin et al., 2018). The lithology of the upper section is
primarily light grey silty mudstone or argillaceous silt, with a
thickness of approximately 90–210 m. The lower section is
dominated by dark grey–black mud shale with a thickness of
approximately 65–240 m, and a set of organic-rich shales with
TOC>2% (average > 3.5%) and thicknesses of 20–50 m have
developed at the bottom, which is currently the main gas
production layer for shale gas exploitation (Figure 1B).
These shales have been affected by multistage structural
activities and the superposition of two structural domains,
i.e., the Tethys and Marginal-Pacific Oceans, and therefore
have a complex structural track and developed faults and
fractures, which significantly impact the preservation and
enrichment of shale gas.
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SAMPLES AND METHODS

Samples
Two main methods were used in this study: macrogeological
analysis and microexperimental testing. In the macrogeological
analysis, field outcrop surveys, drilling core observations,
formation microresistivity imager (FMI) image logging and
seismic structure analysis were combined with actual
production data analysis. A fracture investigation and
statistical analysis were conducted at eight observation points
in the outcrop area of the Yanjin Anticline, and a total of 385 sets
of fracture data and 169 photos were collected. Core observation
and sampling were conducted in the Longmaxi Formation at a
depth of approximately 178.64 m in wells N219, N228, etc., and
35 fracture filling samples and 12 full-diameter samples were
obtained. In addition, 1020-km2 three-dimensional (3D) seismic
data volumes were collected from the Shuanglong–Luochang area
for structural interpretation.

Macrogeological Analysis Methods
Considering the regional structural background, a fracture
investigation was conducted on well-exposed strata of the
Yanjin Anticline Longmaxi Formation outcrop, and the
fractures were staged and supported. Drilling core observations
were primarily used to determine the fracture type, development

degree, filling characteristics, fracture intersection relationship,
etc. FMI logging was used to recognize and interpret fracture
occurrence (Fan et al., 2020a, 2020b; Li et al., 2020; Li, 2021). The
LANDMAK 2003.12.13 interpretation system and 10 × 10 survey
network density controls were employed to process and interpret
the 3D seismic data from the Shuanglong–Luochang area, and
these data were used to determine the fracture distributions,
intersection relationships, and evolution processes at different
stages.

Microexperimental Testing Methods
Inclusion Testing of Fracture Filling
Homogenization temperature tests were performed on the
primary mineral inclusions that formed during the same stage
as the fracture filling. The homogenization temperature
distribution intervals of the inclusions showed that the
fractures and fracture formation stages played a critical role
during the paleostructural period. Fifteen fracture filling
samples from four wells in the study area were formed into
rock slices. The slices were placed on a THMSG600 geological
cold-and-hot platform at room temperature and heated at a rate
of 2°C/min until the gas–liquid inclusions were homogenized.
The homogenization temperatures were then recorded. Statistical
data were collected on the homogenization temperatures of all
fluid inclusions. The characteristics of the inclusions and

FIGURE 1 | Geological overview of the Yanjin–Junlian area (Zhang et al., 2021). (A). Structural location; (B). stratigraphic histogram.
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homogenization temperature intervals were used to identify the
fluid-filling stages (Li et al., 2019b).

Analysis of the Thermal Evolution Degrees of Organic
Matter
An Axioscope. A1 polarized light microscope and an MSP.400
microspectrophotometer were used for testing. The experimental
samples were placed on the microscope stage, and the asphalt
reflectance (Ro) was measured under unpolarized light. The
asphalt reflectance of the test sample was measured and
converted to the equivalent vitrinite reflectance (Rob) using a
relationship established by Feng et al. (Ro = 0.6569 × Rob + 0.3364,
natural series).

Low-Temperature Thermochronology and Thermal
History Simulation of Apatite
Radiation damage was experimentally assessed based on 238U
spontaneous fission effects. The low-temperature thermal
evolution history of rocks was simulated using mathematical
geological models that can effectively reveal the history of
basin structural uplifts and denudation (Reiners, et al., 2004;
Deng et al., 2013). Due to the lack of apatite heavy minerals in the
fine-grained rocks of the Longmaxi Formation and according to
the principle that continuous strata have similar thermal
evolution histories, fresh Jurassic coarse sandstone samples
from the surface of the Junlian area were selected for apatite
fission track testing and thermal history simulation.

RESULTS

Macrogeological Method Stage Study
Analysis of Surface Fold Structure
Structural superposition and transformation are the most direct
and effective evidence for use in structural analysis and to
determine structural development sequences (Schwartzkopff
et al., 2017; Li et al., 2019b). The sequences of structural
activities during different periods can be determined from the
spatial intersections and compounding relationships of structural
tracks formed by these structural activities.

The study area is located at the intersection of the southern
Sichuan fold belt and the Loushan fault-fold structural belt. The
area has been transformed by structural actions at different stages
and in different directions and thus exhibits the characteristics of
structural compounding and superposition at different stages.
Using fold development as a barometer, the Yanjin Anticline and
Luochang Syncline main structural bodies are characterized as
ENE-trending, the northern Changning Anticline and other
structural bodies are characterized as WNW-trending, and the
northwestern Fujiang Syncline, Tiancun Anticline, and other
main structural bodies are characterized as NW-trending.
However, the structural tracks of adjacent areas are quite
dissimilar. The central main body of the Yanjin Anticline is
ENE-trending and turns eastward towards the nearly SN-
trending Junlian–Shuanghe Anticline, thereby counteracting
the arc-shaped axis that turns from EW to NW towards the
Zhonghechang Anticline to the west, and this anticline exhibits

prominent structural superposition characteristics (Figure 2).
The SN-trending structures are superimposed on early ENE-
trending structures, and the main body of the Luochang Syncline
is ENE-trending, which transforms northwest to the NE-trending
Fujiang Syncline. The fold structure track shows that the surface
structure has clearly been affected by extrusion stress in three
directions, for which the sequence is near SN, NE, and near EW.

Analysis of Surface Outcrop Fractures
Field fracture observations were primarily conducted on the
Longmaxi Formation stratum exposed by the Mitanzi
Anticline, including eight observations, i.e., Huangjiaping,
Longdong Village, Banbiandu, Gaoshikan, Lijiawan, Xinhua
Village, Lantian, and Diaolouzi. A total of 446 sets of fracture
orientation observation data were obtained.

There are plane shear fractures, sectional shear fractures, and a
few tension fractures in the Longmaxi Formation shale in the field
outcrops. The shear fractures are widely developed, generally on
the two wings of the anticline and the turning end of each
observation point. The plane shear fracture intersects with the
rock layer vertically or at a high angle. The fracture surface is
straight, and the occurrence is relatively stable. The fracture often
occurs as a planar X-shaped conjugate (Figures 3A–D). The
sectional shear fracture intersects with the rock layer at a low
angle and has a poor development degree compared with the
plane shear fractures (Figures 3E,F) (Yin and Wu 2020; Li, 2021;
Yu et al., 2021). The tension fractures are geometrically irregular,
with large variations in width and a short extension. When the
formation was deposited, the stratum dip angle changed due to
transformations under subsequent tectonic stress, and the
fracture occurrence from the early stage changed accordingly.
Therefore, the fracture occurrence measured in the field
corresponds to that after structural deformation of the stratum
during the later stage. The development orientation of the
conjugate shear fractures before and after layer correction was
compared, and fracture staging and supporting analysis were
performed to identify the fracture stages of the Longmaxi
Formation. StrGraphPrj software was used for layer correction,
and DIPS geological geometry analysis software was used to
perform a statistical analysis based on the strike rose diagram,
stereographic projection, and other layer correction methods to
determine the dominant orientation of cracks (Laubach et al.,
2009; Ameen 2016).

Based on structural geology principles, the intersection line of a
conjugate shear fracture is parallel to the middle principal stress
axis, and the maximum principal stress axis and the minimum
principal stress axis are parallel to the angular bisectors of the
included acute angle and the included obtuse angle, respectively (Li
et al., 2019b, 2022a; Gao 2019; Kang, 2021). The direction of the
principal stress can thereby be determined. There are six groups of
planar X-shaped conjugate shear fractures and three groups of
sectional shear fractures in the Longmaxi Formation shale
(Figure 4), where the SSW-trending (195° ± 10°) and SE-
trending (145° ± 5°) fractures constitute early planar X-type
conjugate shear fractures that formed by strong horizontal
extrusion by the Daloushan Fold Belt from SSW to NNE
(175° ± 5°). In the later stage of structural action, near-EW-
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trending (265° ± 5°) sectional shear fractures formed, and the
WNW-trending (285° ± 5°) and NE-trending (35° ± 5°) fractures
constituted second-stage planar X-shaped conjugate shear
fractures. These shear fractures were formed slightly later than
the SSW- and SE-trending fractures by NW-trending (315° ± 10°)
extrusion caused by the joint actions of the central Sichuan Uplift
and Jiangnan Xuefeng Uplift, and NE-trending (35° ± 5°) sectional
shear fractures also formed. The SW-trending (235° ± 5°) and NW-
trending (305° ± 5°) fractures constitute the last-stage planar
X-shaped conjugate shear fractures and have the longest
formation time, primarily resulting from the extrusion stress in
the near-EW direction (265° ± 5°). A few near-SN-trending (355° ±
5°) sectional shear fractures developed.

Core Fracture Staging and Support
The clear relationship among core fracture development, core
fracture shape, filling material, and intersection development of

core fractures in the Longmaxi Formation provides data for
directly determining the structural stages. The structural
fractures in the Longmaxi Formation are dominated by high-
angle and vertical-shear fractures. The shear fractures are
characterized by stable occurrences, smooth fracture surfaces,
and clear intersection relationships. Intersection relationships at
three stages can be clearly seen (Figure 5). The dominant FMI
imaging logging fracture trends are near EW (85° ± 10°), NNE
(35° ± 5°) and WNW (285° ± 5°), followed by NW (335° ± 5°),
NW (290° ± 5°), and ENE (75° ± 5°) (Figure 6). The FMI log for
each well is limited by the structural position at the drilling
location, the size of the wellbore, and the imaging range and
therefore only reflects the fracture development around the
wellbore and not the overall development of underground
fractures. The fractures in each well have different dominant
orientations, which are included in the dominant orientations of
the outcrop fracture ranges, and there is a correspondence

FIGURE 2 | Tracks of surface fold structures in the Shuanglong–Luochang area.
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between the downhole orientations and surface fracture
orientations.

Fault Structure Analysis of the Longmaxi Formation
The fracture system in the study area was formed under the
constraints imposed by the tectonic stress field in southeastern
Sichuan and is consistent with the evolution sequence by which it
originated. Therefore, a structural evolution model can be
developed based on the underground fault characteristics of
the Longmaxi Formation.

The geophysical interpretation shows that the faults of the
Longmaxi Formation in the study area are primarily NE, near
SN and NW, with a few near-EW faults. Most faults have dips
between 40 and 60° and appear as reverse faults on the seismic

sections (Figure 7). Consistent with the study of core and
outcrop fractures, the intersection and restriction relationship
of faults on the plane can also be used to analyse the structural
stage (Feng et al., 2018; Yu et al., 2022). In addition, structural
traces of the folds are also the basis for macro analysis of
structural stages (Figure 8). There are only two EW-trending
faults, both of which occur in the southern part of the study area,
and the fault direction is consistent with the extension direction
of the Yanjin Anticline. This fault formed the earliest in the
study area and has a formation time consistent with that of the
near EW-trending Yanjin Anticline. The NE-trending faults are
the most developed in the study area: these faults obliquely
intersect the main fold structural tracks, and their tracks are
consistent with the NE-trending superimposed structures, such

FIGURE 3 | Types and characteristics of fractures of Longmaxi Formation in outcrops. (A). Plane shear fracture, Gaoshikan area; (B). plane shear fracture,
Banbiandu area; (C). plane shear fracture, Huangjiaping area; (D). plane shear fracture, Lantian area; (E). profile shear fracture, Diaolouzi area; (F). profile shear fracture,
Banbiandu area.
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as the Fujiang Syncline and Zhonghechang Anticline in the west.
These tracks would have formed under structural movements
during the second stage, and the near-SN-trending faults only
developed in the western part of the study area near the basin

margin and turned eastward to become NW-trending. The
tracks of the faults at this stage are consistent with the near-
SN-trending Junlian–Shuanghe Anticline and result from
previous structural movement. Based on the regional

FIGURE 4 | Staging and supporting outcrop fractures in the Longmaxi Formation in the Yanjin–Junlian area.
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structural background and extrusion stress mechanisms, the
structural evolution of the Yanjin–Junlian area has primarily
been affected by three stages of structural movement: the near-
EW structure formed first, followed by the NE-trending
structure, and then the near-SN-trending structure (which
turned eastward towards the NW-trending structure), which
is consistent with the analytical results for the surface structural
tracks.

Experimental Testing Methods
Inclusion Testing for Fracture Filling
The results from inclusion homogenization temperature tests on
different core fracture fillings, the core fracture cutting relationship,
and the FMI imaging interpretation results were used to identify
three categories of fractures in the Longmaxi Formation downhole;
that is, these fractures were affected by three stages of structural
movement (Figure 9) (Burruss et al., 1983; Mourgues et al., 2012;
Han et al., 2018). The inclusions of the first-stage fracture fillings are
two-phase (gas–liquid), with a gas–liquid ratio of 5–8%,
corresponding to the first-stage structural uplift at the maximum
burial depth of the study area. The homogenization temperature is in
the 161–195°C range, which is the highest among the three stages.
The second-stage fractures are filled with coarse-grained calcite,
dominated by semifilling or nonfilling, and the inclusions are
primarily distributed in groups. The homogenization temperature
is primarily in the 121–143°C range. The third-stage fractures have a
low filling degree, and the homogenization temperature is low
(primarily in the 74–105°C range), indicating that the uplift
reaches the maximum extent at this time, the burial depth is
shallow, and the structure is basically finalized.

Burial-Thermal Evolution History Analysis
Burial-thermal evolution history analysis was used to
accurately determine the uplift and subsidence history of
the Longmaxi Formation since the sedimentary period of
the Changyanjin–Junlian area, which reflects the formation
time of the fractures in the Longmaxi Formation. The burial-
thermal evolution history was determined using the drilling
geological data, regional heat flow value, rock thermal
conductivity, and geochemical experimental test data for
Well N221 (Yin et al., 2018; Fan et al., 2020b; Li et al.,
2020). Five major structural uplifts have occurred in the
study area since the Caledonian period. The first stage is
the early Caledonian–Hercynian movement (415–270 Ma),
which is the overall uplift stage, and the burial depth is

generally within 1900 m. The second stage is in the early
stage of the Hercynian–Yanshan movement (260–50 Ma),
which involved continuously descending sediment. The
burial depth is between 2000 and 6,000 m. The third stage
is in the late Yanshan movement (50–37 Ma), during which
strong uplift and denudation occurred, and the burial depth is
between 4,800 and 5,800 m. The fourth stage is in the early-
middle period of the Himalayan movement (37–20 Ma),
during which rapid uplift and denudation occurred. The
burial depth is 3,500–4,500 m. The fifth stage is in the late
Himalayan movement (19 Ma–0), a stage of continuous
extrusion and uplift, with a burial depth of 2,200–3,700 m
(Figure 10).

The Ordovician (O)–Jurassic (J) strata in southern Sichuan are in
conformity or parallel unconformity contact. Before the middle-late
Yanshanian stage, only a relatively simple vertical up-and-down
movement occurred in the study area that weakly influenced the
structural track over the entire area. Therefore, the formation
periods for the Longmaxi Formation in the Yanjin–Junlian area
are the late Yanshan movement, the early-middle Himalayan
movement, and the late Himalayan movement to the present.
The first two structural movements are characterized by short
durations and large uplifts. Thus, these strong structural
movements were the most critical for forming structural tracks in
the study area.

Low-Temperature Thermochronology and Thermal
History Simulation of Apatite
Apatite fission track testing and thermal history simulations
effectively revealed the history of structural uplift and
denudation in the basin. The experimental test results
presented in Figure 10 show that the fission track length
distribution of the experimental sample apatite is
concentrated, the cooling age is 67.1 ± 5 Ma, the fission
track length is 10.8 ± 4 μm, and the peak track length is
9–11 μm (Figure 11). The thermal history simulation of the
apatite particles revealed that the strata samples in this area
primarily underwent four thermal evolution stages. The
first stage of uplift and denudation occurred during the
Permian to Middle Jurassic (250–65 Ma), and rapid
burial occurred after the Middle Jurassic sedimentary
period. This simulation shows that the early fission tracks
generated during the denudation process were not completely
reset during the later burial process, and some thermal
evolution information of the source region was preserved.

FIGURE 5 | Developmental characteristics and intersection relationship of core fractures.
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The evolution stages after the late Yanshan period include the
late Jurassic (60–40 Ma), Eocene–early Miocene (40–10 Ma),
and the late Miocene–present (10 Ma–present). Although the
fission track was not completely reset from the early Permian
to the middle Jurassic (250–65 Ma), these results prove that the
Longmaxi Formation primarily underwent three major
structural movements after formation.

DISCUSSION

In this study, fracture staging was performed by combining
geological methods, such as surface-outcrop fracture
investigation, structural track analysis, downhole-core

fracture description, and seismic and logging data analysis,
with fracture-filling inclusion-homogenization-temperature
testing, burial-thermal evolution history, apatite experimental
fission tracks, and other experimental analysis methods
(Ibrahim et al., 2017; Jiang et al., 2017; Feng et al., 2018;
Smeraglia et al., 2021; Wang et al., 2022). The results
confirmed that three primary stages of structural movement
occurred after the sedimentary period of the Longmaxi
Formation in the Yanjin–Junlian area, corresponding to three
stages of structural evolution. The theory of structural geology
and fracture mechanics was used to develop a structural
evolution model for the Longmaxi Formation (Figure 12).

Before the early Yanshan structural movement (before
55 ± 5 Ma), the structural environment of the

FIGURE 6 | Fracture characteristics and strike rose diagram from image logging.
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Yanjin–Junlian area was relatively stable and primarily
dominated by up-and-down movements. Strata from the
Sinian to the Middle Jurassic were deposited from bottom

to top. The structural movement at this stage had little effect
on the development and structural track of the
Yanjin–Junlian area.

FIGURE 7 | Characteristics of the faults in seismic profiles.

FIGURE 8 | Structural outline of the Longmaxi Formation in the Yanjin–Junlian area (seismic interpretation results).
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Late Jurassic–Palaeocene (55 ± 5–38 ± 2 Ma): Extrusion of
the near-SN-trending Daloushan Structural Belt (170° ± 5°)
caused a group of NNW- and NE-trending planar shear
fractures to develop in the study area before significant
deformation of the Longmaxi Formation occurred. These
fractures intersect at a high angle or are perpendicular to
the layer and appear as X-shaped conjugate shear fractures
on the plane. Continuous extrusion of tectonic stress at this
stage resulted in the formation of near-EW-trending folds,
such as the Yanjin Anticline and Luochang Syncline. Near-
EW-trending sectional shear fractures were generated along
with the strata fold deformations. The fractures further
expanded and penetrated through the layer, forming a few
near-EW-trending fractures. These fractures formed earliest
and have a high filling degree. The filling material was
primarily calcite, and the homogenization temperatures of
the filling inclusions were 161–195°C.

Eocene–early Miocene (38 ± 2–15.5 ± 3.5 Ma): The Indian and
Eurasian Plates gradually collided and closed, causing the uplift of
the Qinghai-Tibet Plateau, triggering NW- (305° ± 5°) trending

extrusion in this area and forming the Fujiang Syncline, further
generating NE-trending folds, such as the Fujiang Syncline and
Tiancun Anticline, superimposed on the Luochang Syncline
while simultaneously forming NW- and near-EW-trending
plane conjugate shear fractures and NE-trending sectional
shear fractures. The NE-trending sectional shear fractures
further extended and penetrated the layer, forming the NE-
trending reverse fractures that developed in the study area.
The homogenization temperatures of the fracture-filling
inclusions produced at this stage of structural movement were
121–143°C.

Late Miocene–present (15.5 ± 3.5 Ma–present): The collision
between the Indian and Eurasian Plates and the subduction of
the Pacific Plate produced a structural force that gradually
expanded into the Sichuan Basin, whereby the study area
was subjected to dual stresses from the south and north
(under the joint action of the Xuefeng Uplift, Central
Sichuan Uplift, and Central Guizhou Uplift). The western
edge was subjected to near-EW-trending (265° ± 5°)
structural extrusion, resulting in the formation of the

FIGURE 9 | Fluid inclusion characteristics of fracture fillings. (A–B) is fluid inclusion characteristics; (C). The distribution range of homogenization temperature.

FIGURE 10 | Burial-thermal evolution history of Well N221.
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Junlian–Shuanghe Anticline superimposed on the Yanjin
Anticline and Zhonghechang Anticline. During the tectonic
stress transfer process influenced by the Xianshuihe left-lateral
strike-slip fault zone, the tectonic stress was deflected from N to
S in a counterclockwise direction, forming WNW- and NE-
trending plane conjugate shear fractures in the north and near-
SN-trending (NNW-trending) sectional shear fractures. During
the fracture expansion processes at this stage, deflection of the
stress field caused the formation of a near-SN-trending reverse

fault in the north and the gradual formation of a WNW-
trending reverse fault in the south. The fractures produced
by the structural movement at this stage had a low degree of
filling, and the homogenization temperatures of the filling
inclusions were 74–105°C. The action of a later tectonic
stress field resulted in the transformation and
superimposition of the early structural track, and the system
dominated by present NE- and near-SN-trending with a few
near-EW-trending folds and fractures finally formed.

FIGURE 11 | Apatite fission track and thermal history simulation.

FIGURE 12 | Model for the structural development stages and evolution of the Wufeng-Longmaxi Formation in the Yanjin–Junlian area.
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CONCLUSION

The Yanjin–Junlian Area in the southern Sichuan Basin was
considered as a case study. A structural analysis was conducted
using geological methods and experimental testing methods. The
structural development characteristics, formation time, and
sequence were determined, and then a structural evolution
model of the Longmaxi Formation in the Yanjin–Junlian area
was established.

(1) The Longmaxi Formation in the Yanjin–Junlian area of the
southern Sichuan Basin is characterized by structural
compounding and superposition from multistage
structural movements. Based on the results of surface
folding and fracture development, these movements were
affected by SN, NE, and near EW extrusion stresses. The
underground core fracture analysis and fault structure
analysis results show that these movements have primarily
developed in three directions, i.e., near EW, NE, and near SN,
corresponding to the action of the main structural
movements at three stages. The corresponding fractures
also developed corresponding to the three stages.

(2) Fracture filling fluid inclusion tests, the burial-thermal
evolution history, and apatite fission track tests confirmed
that the formation of the structural track could be categorized
into three main stages, i.e., the late Jurassic–Palaeocene (55 ±
5–38 ± 2 Ma), Eocene–Early Miocene (38 ± 2–15.5 ± 3.5 Ma),
and late Miocene–present (15.5 ± 3.5 Ma–present). The
homogenization temperatures of the fillings are

161–195°C, 121–143°C and 74–105°C. Finally, the tectonic
evolution model of the Longmaxi Formation is established.
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