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S U M M A R Y
Flexural rigidity, indicated by the effective elastic thickness, is important for describing the
mechanical behaviour of the subducted oceanic lithosphere in the thin plate model. 2-D thin
plate models have been widely used in estimating the effective elastic thickness (Te) of the
oceanic lithosphere at subduction zones and collision zones. However, realistic lithospheric
flexural modelling of the subducted oceanic plates should account for the lateral variation of
Te along the strike of the trench. We present a 3-D finite-difference flexural bending model
that includes variable flexural parameters in all directions. We compare the results with 2-D
flexural models, and we discuss the differences in estimating Te within the bending plate at
subduction zones. Theoretical analysis shows that when Te changes only slightly along the
trench, a 2-D model can sufficiently estimate Te, when Te changes sharply because of the
effects of seamount loading and bending near the trench, tearing of the subducting plate, or the
transition from subduction zone to collision zone; the Te values calculated by 2-D models may
produce errors up to 30 per cent compared with those predicted using a 3-D model, because
they fail to account for the lateral slab-pulling force. We evaluate the differences between using
2-D and 3-D flexural model assumptions by simulating bending of the subducted oceanic plate
at the northern Manila Trench. The results show that from the subduction zone to the collision
zone, Te estimated from the 2-D model gradually changes from 20.2 to 32.9 km, whereas Te

estimated from the 3-D model changes sharply at the continent–oceanic transition zone of the
northern margin of the South China Sea.

Key words: Elasticity and anelasticity; Lithospheric flexure; Mechanics, theory, and mod-
elling; Subduction zone processes.

1 I N T RO D U C T I O N

Generally, it is suggested that lithospheric rocks behave elastically or plastically over geologic time (i.e. >106 yr) and space scales (Turcotte
& Schubert 2014), although numerous rheologies have been proposed for the mechanical behaviour of the oceanic lithosphere, such as
perfectly plastic (Lobkovsky & Sorokhtin 1976), elastic-perfectly plastic (Turcotte et al. 1978), viscoelastic (Melosh 1978) and fully viscous
behaviour (de Bremaecker 1977). The elastic thin plate theory has often been used to model the flexural shape of the lithosphere, especially
the subducted oceanic plate (Hanks 1971; Watts & Talwani 1974; Parsons & Molnar 1976; Bodine & Watts 1979; McNutt 1984; McAdoo
et al. 1985; McQueen & Lambeck 1989; Judge & McNutt 1991; Harris & Chapman 1994; Levitt & Sandwell 1995; Garcia-Castellanos et al.
2000; Bry & White 2007; Arredondo & Billen 2012; Zhang et al. 2014; Craig & Copley 2014; Craig et al. 2014; Emry et al. 2014; Zhou et al.
2015; Hunter & Watts 2016; Zhang et al. 2018; Zhou & Lin 2018). Some early studies on subducted oceanic plate flexure mainly focused on
2-D profiles along the dimension perpendicular to the trench using a uniform effective elastic thickness (Te; Watts & Talwani 1974; Caldwell
et al. 1976; Bodine & Watts 1979; Levitt & Sandwell 1995). Mounting evidence suggests that the bending of the oceanic plate produces
normal faults near the outer rise during subduction (Christensen & Ruff 1988; Masson 1991; Kobayashi et al. 1998; Mortera-Gutiérrez et al.
2003; Ranero et al. 2003, 2005; Oakley et al. 2008; Lefeldt et al. 2012; Craig et al. 2014; Zhang et al. 2014, 2018; Emry & Wiens 2015;
Zhou et al. 2015; Zhou & Lin 2018). These bending-related normal faults can cut several kilometres into the uppermost mantle and bring
seawater into the crust and upper mantle, resulting in mantle serpentinization (Ranero et al. 2003; Grevemeyer et al. 2005). This process
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produces plate weakening and reduction in Te near the trench axis, which indicates that a uniform Te is unreasonable (McAdoo et al. 1985;
Panteleyev & Diament 1993; Garcia-Castellanos et al. 2000; Billen & Gurnis 2005; Contreras-Reyes & Osses 2010; Craig & Copley 2014;
Emry et al. 2014; Zhang et al. 2014, 2018; Zhou et al. 2015; Hunter & Watts 2016; Zhou & Lin 2018). Therefore, considering the yield
envelope of the lithospheric rheology, McAdoo et al. (1985) proposed a layered rheology lithosphere (LRL) model, in which the plate was
divided into three regimes: an upper brittle regime, a lower ductile regime, and an elastic regime sandwiched between the brittle and ductile
layers. They further indicated that the LRL model was more practical than the elastic model. With a similar model (brittle–elastic–ductile),
Panteleyev & Diament (1993) discussed the relative contributions of rheological parameters on lithospheric flexure in subduction zones.
Garcia-Castellanos et al. (2000) developed a 2-D numerical algorithm with multilayered elastic–plastic rheology and reported a better fit to
the bathymetry of the Tonga and Kermadec trenches than the classical homogeneous model. They then tested their model by comparing the
predicted stress and yielding distributions with the outer-rise earthquake hypocentres in the subducting plate and found that they matched
well. Emry et al. (2014) investigated earthquakes occurring during 1990–2011 around the southern and central/northern Mariana Trench and
modelled the stress distribution of the subducting Pacific Plate with the method of Garcia-Castellanos et al. (1997). Their results showed
that flexure models matched the location of extensional and compressional earthquakes. Craig & Copley (2014) indicated that Te of oceanic
lithosphere estimated by purely elastic plate modelling had little relationship with the plate age, because the purely elastic model may not
represent the true rheology of the oceanic lithosphere. Zhou et al. (2015) studied the mechanisms of normal faults of the Mariana Trench and
simulated the deformation of the subducting plate with a 2-D elastoplastic plate model based on the explicit Lagrangian method FLAC (Fast
Lagrangian Analysis of Continua). They found that to fit the bathymetric profile and the structure of the normal faults, a horizontal tensional
force was required. Zhou & Lin (2018) further indicated that bending-related normal faults reduced the Te by nearly 52 per cent locally in
the southern Mariana Trench and by 33 per cent in the central/northern region of the trench. As a simplification, Contreras-Reyes & Osses
(2010) proposed a finite-difference solution of the 2-D flexural equation with variable Te along the direction perpendicular to the trench and
provided an effective method to estimate the trench-axis vertical loading force V0, the trench-axis moment M0, and Te. They assumed that
the reduction in Te was a consequence of inelastic deformation. With a similar method to that of Contreras-Reyes & Osses (2010), Zhang
et al. (2014) estimated the variation of Te and other flexural parameters (M0 and V0) along the Mariana Trench and pointed out that the
reduction in Te varied from 21 to 61 per cent along the trench. Hunter & Watts (2016) used free-air gravity anomaly data to estimate Te of
circum-Pacific subducting oceanic lithosphere, based on a uniform Te and a variable Te, respectively. They found that the reduction in Te was
generally 40–65 per cent. In general, considering the yield strength of the lithosphere, two models are often used to investigate the flexural
deformation of the lithosphere in subduction zones, the elastic–plastic model and the variable Te elastic model, which both fit well with the
bathymetry and free-air gravity anomaly data. Most studies have focused on the reduction of Te in the direction perpendicular to the trench,
although the results of Contreras-Reyes & Osses (2010) and Zhang et al. (2014) have shown that the Te of the oceanic plate can vary not only
in that direction but also along the strike of the trench. The 2-D flexural model generally fails to account for lateral variations of the flexural
parameters and bending effects along the strike of the trench, which have been taken into account by 3-D flexural modelling in this study.

Realistic 3-D modelling of the flexural behaviour of the subducted oceanic lithosphere near the trench has been scarce until recently. Van
Wees & Cloetingh (1994) first presented the finite-difference formulation for 3-D elastic flexure of the lithosphere, which was subsequently
applied to investigate fault controlled 3-D basement geometries in Lake Tanganyika (East Africa). Wessel (1996) provided an analytical
solution for 3-D flexural deformation of semi-infinite elastic plates with constant flexural rigidity. Braun et al. (2013) combined a 3-D
flexural model (finite-difference method) with a thermal model (finite element method) of the underlying lithosphere to study complex passive
margins. Manrίquez et al. (2014) solved the flexure equations of the Reissner–Mindlin thin plate theory using the finite element method, and
successfully applied it to study the Chile Trench. Garcia et al. (2015) reported an iterative spectral solution with variable rigidity. Most of the
3-D models discussed a finite area with fixed boundaries, which are unsuitable for dealing with subduction problems (van Wees & Cloetingh
1994; Braun et al. 2013; Arnaiz-Rodrı́guez & Audemard 2014).

The main question we attempt to address is whether it is accurate to use a 2-D thin plate to model the bending of the subducted lithosphere,
especially when there is laterally variable Te along the trench. In this study, we solved the 3-D flexural equations of the semi-infinite Kirchhoff
plate using the finite-difference method (Fig. 1), focusing on the lateral variation in Te of the flexural lithosphere and discussing the differences
between 2-D and 3-D models in estimating flexural parameters of the subducted plate. The 3-D model was then applied to simulate the flexural
shape of the northernmost region of the Manila Trench.

2 F L E X U R A L M O D E L

2.1 Basic equation

Considering a thin plate extending along two horizontal dimensions x and y, the plate’s flexural rigidity D(x, y) is only a spatially varying
function (Garcia et al. 2015). Based on the Kirchhoff thin plate assumption, the differential equation governing the vertical deflection w(x, y)
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Figure 1. Diagram of the flexure produced by surface loading (seamount) and boundary loading. ρw, ρc and ρm are the densities of water, crust and mantle
respectively; ρL is the applied load (seamount) density. M0 is the bending moment, V0 is the vertical shear force and F0 is the horizontal force, which has been
ignored in our model. Te

M represents the seaward effective elastic thickness, and Te
m is the bending-reduced effective elastic thickness

of an elastic plate with variable Te is given by (van Wees & Cloetingh 1994; Braun et al. 2013):
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where �ρ = ρm − ρw is the density contrast between the mantle (ρm) and water (ρw) filling in the space created by the plate deflection
w(x, y); q(x, y) is a spatially varying normal loading force, and Nx, Ny and Nxy represent in-plane forces. Tensile stresses are considered positive,
whereas compressive stress is negative, following the definitions of Wessel (1996) and Garcia et al. (2015). The variable g is gravitational
acceleration, and D is the flexural rigidity defined as:

D = ETe
3 (x, y)

12 (1 − ν2)
, (2)

where Te is the effective elastic thickness, E is Young’s modulus and ν is Poisson’s ratio. Generally, ν is a constant, but Te and E are
allowed to vary spatially in this model. In addition, if the plate rigidity is uniform, eq. (1) would simplify to the biharmonic equation:
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boundary conditions (Wessel 1996; Watts 2001). However, this equation assumes a constant D, and therefore cannot be used to solve the
problem with variable Te (D). In this study, eq. (1) must be solved numerically (finite-differences) because q(x, y), D and Te vary in an
arbitrary manner in space. Therefore, according to the Kirchhoff thin plate assumption, the bending moment Mx, Mxy and My as well as the
shear forces Vx and Vy become:
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The variables Vx and Vy contain the contributions from the twisting moments ∂Mxy

∂y and ∂Mxy

∂x , which are called Kirchhoff’s supplemented
shear force (Timoshenko & Woinowsky-Krieger 1959). In addition, Hooke’s Law of elastic bodies and the Kirchhoff assumptions of a thin
plate assume: (1) the normal vectors to the middle surface are still orthogonal to the middle surface after deformation, (2) there is no strain
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in the direction perpendicular to the x–y plane, or εzz = 0 and (3) the middle surface has no strain parallel to the surface. The flexural stress
field (σ xx, σ yy and σ xy) is given by (Jin & Jiang 2002):
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where (εxx , εyy , εxy) represents the strain tensor. Compared with other 3-D finite-difference models with fixed boundaries, the domain of our
model is a rectangle of length X and width Y with boundary conditions (�1, �2, �3, �4), listed as follows (Fig. 2):

�1 : �Mx = − �M0, �Vx = − �V0

�2 : My = 0, Vy = 0
�3 : w = 0, Mx = 0
�4 : My = 0, Vy = 0.

(6)

2.2 Finite-difference method

Based on the model shape, rectangular grids are used to divide the plate with regular node spacing dx and dy. With finite-difference
approximations, eq. (1) can be replaced by differential equations. The continuum equation for each node is recast as a linear equation. The
partial difference of D is directly evaluated, and deflection w is solved (van Wees & Cloetingh 1994). The large system of algebraic equations
containing all nodes can be expressed as:

AW = Q, (7)

where A is the coefficient matrix; W is the vector of unknown deflection w. The length of W is equal to the total number of nodes, and Q is
a loading vector with the same length as W (the Appendix). The linear equations can be solved using Gaussian elimination or a multigrid,
iterative method when the number of nodes is too large.

2.3 Extra loading and in-plane forces

The subducted oceanic lithosphere may not be subjected only to the trench-axis vertical loading, and axial bending moment, but also to
surface loadings from features such as seamounts or sediments and horizontal loading from slab pull, ridge push or plate interface coupling.
This finite-difference method allows q(x, y) to vary arbitrarily in both the x and y directions, and therefore it differs from the previous flexural
models assuming q(x) = 0 (Caldwell et al. 1976; Parsons & Molnar 1976; Levit & Sandwell 1995; Kemp & Stevenson 1996; Chang et al.
2012; Craig & Copley 2014; Turcotte & Schubert 2014), as well as the flexural model with q(x) only changing in the direction perpendicular
to the trench (McAdoo et al. 1985; Panteleyev & Diament 1993; Garcia-Castellanos et al. 2000; Billen & Gurnis 2005; Contreras-Reyes
& Osses 2010; Craig & Copley 2014; Emry et al. 2014; Zhang et al. 2014; Zhou et al. 2015; Hunter & Watts 2016; Zhang et al. 2018;
Zhou & Lin 2018). The horizontal in-plane forces were set to zero in some previous studies (van Wees & Cloetingh 1994; Contreras-Reyes
& Osses 2010; Zhang et al. 2014; Hunter & Watts 2016; Zhang et al. 2018), as researchers suggested that these values will only cause the
onset of buckling when they reach critical values and it is too difficult to produce such great stresses at subduction zones. However, more and
more research has shown that the in-plane force cannot be ignored (Karner 1983; Karner et al. 1993; Muller et al. 1996; Garcia-Castellanos
et al. 2000; Craig & Copley 2014; Emry et al. 2014; Zhou et al. 2015; Zhou & Lin 2018). Garcia-Castellanos et al. (2000) reported that the
horizontal force in the Tonga and Kermadec trenches reached 4.0–10.0 × 1012 N m–1, which had the same order of magnitude as the axis
vertical force. Zhou et al. (2015) studied the mechanism of normal faulting in the Marina Trench and reported a horizontal tensional force of
2.4–4.8 × 1012 N m–1. Note that horizontal in-plane forces are included in our model by the terms Nx, Ny and Nxy in eq. (1).

2.4 3-D inversion method

In the 3-D model, the boundary loadings M0 and V0 are vectors rather than single values, and Te becomes a 2-D matrix. Because there are
too many inversion parameters for conventional analysis, parameter vectors are searched by particle swam optimization (PSO method; Shi
& Eberhart 1998). As the distance between the initial solution space and the optimum solution affects the convergence time, we used 2-D
inversion results to help constrain the initial solution space of the 3-D inversion. The 3-D inversion results are displayed in Figs 3 and 4.
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Figure 2. Comparisons between our 3-D model, analytic solutions, and a 2-D finite difference model (Contreras-Reyes & Osses 2010). (a) Comparisons
between our model and the 2-D analytic solution with boundary load and uniform Te. (b) Comparisons between our model and the 2-D model of Contreras-
Reyes & Osses (2010) with boundary loading and variable Te. (c) Comparisons between our model and the 2-D model of Contreras-Reyes & Osses (2010) with
boundary loading and surface loading. (d) Comparisons between our model and the 2-D analytic solution with a point load and uniform Te, (e) Comparisons
between our model and the 2-D analytic solution with linear load and uniform Te. (f) Comparisons between our model and the 2-D analytic solution with linear
load, in-plane compression, and uniform Te.
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Figure 3. The difference between Te estimated by a 2-D and a 3-D model, with laterally sharp and linearly variable Te. (a) 3-D models with boundary
conditions, (b) 3-D forward results, (c and d) the difference between Te estimated by 2-D and 3-D inversion results and the initial model.
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Figure 4. The difference between Te estimated by a 2-D and a 3-D model with a lateral parabola and periodic variable Te. (a) 3-D models with boundary
conditions, (b) 3-D forward results, (c and d) the difference between Te estimated by 2-D and 3-D inversion results and the initial model.
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Table 1. Constants and parameters used in the flexure model.

Symbol Description Value Unit

E Young’s modulus 7 × 1010 Pa
g Acceleration due to gravity 9.81 m s–2

ν Poisson’s ratio 0.25
ρm Mantle density 3300 kg m–3

ρc Crust density 2700 kg m–3

ρs Sediment density 2000 kg m–3

ρw Water density 1030 kg m–3

3 C O M PA R I S O N O F 2 - D A N D 3 - D F L E X U R A L M O D E L L I N G

3.1 Validation of the 3-D model

Comparisons between finite-difference solutions and analytical solutions have been performed for point loads (van Wees & Cloetingh 1994;
Braun et al. 2013), line loads and disc loads (van Wees & Cloetingh 1994). Here, to test the accuracy of our 3-D flexural modelling of a
subducted oceanic plate, the numerical solutions were compared with the 2-D analytical solution under a simple case describing the flexural
response of an elastic plate to an end vertical shear force V0 and an end bending moment M0 with a uniform Te (Fig. 2). However, for tests
with varying Te and extra loading, no analytical solutions were available. We therefore compared our 3-D flexural modelling results with a
2-D finite-difference model, which was previously used to estimate the flexural parameters of the Chile Trench (Contreras-Reyes & Osses
2010) and the Mariana Trench (Zhang et al. 2014). We then compared out 3-D flexural modelling results with the 3-D analytical solution
under point loading, the 2-D analytical solution under line loading, and the 2-D analytical solution under horizontal force as well as surface
line loading, respectively. The constants and parameters used for the numerical simulation are listed in Table 1. We tested our finite-difference
model with a grid spacing 3 km × 3 km within a model space of 600 km × 600 km (the same setup used in the other simulations in this
paper).

The comparison results are summarized in Fig. 2. The left-hand panel of the Figure shows different model schematics with flexural
parameters and boundary conditions. The middle panel shows a comparison of calculated normalized deflections between the solutions in
this study and other solutions. The solid black lines represent the analytical solution or 2-D finite-difference solutions, and the red star points
indicate our 3-D model solutions. The right-hand panel shows the differences between our solutions and the other solutions; these differences
are on the order of ∼10−3 times smaller than the calculated values, which indicate that they are negligible (Fig. 2).

3.1.1 Constant M0 and V0 with uniform Te

The 2-D analytical solution for the deflection w of uniform Te under a bending moment M0 and an end loading V0 is given by (Turcotte &
Schubert 2014):

w = α2e−x/α

2D

[
−M0 sin

( x

α

)
+ (V0α + M0) cos

( x

α

)]
(8)

where the flexural parameter α is defined by:

α =
(

4D

�ρg

)1/4

. (9)

The vertical force and bending moment are the result of the gravitational body force acting on the descending plate (Turcotte &
Schubert 2014). In this test, the boundary conditions are showed in eq. (6) and Fig. 2(a). In addition, we assume an end vertical shear force
V0 = 0.19 × 1012 N m–1, an end bending moment M0 = 1.37 × 1016 N, and a uniform Te = 25.88 km. These values are taken from profile
P06 of Contreras-Reyes & Osses (2010), and are appropriate for oceanic lithosphere. The comparison results indicate that our 3-D model can
achieve very high accuracy with model error of no more than 0.2 per cent (Fig. 2a).

3.1.2 Constant M0 and V0 with variable Te

For the case of variable Te with constant M0 and V0, no analytical solutions are available. We therefore compared our 3-D model with the 2-D
finite-difference model of Contreras-Reyes & Osses (2010). The values of V0 and M0 are the same as the values shown in Fig. 2(a), whereas
Te changes from 25.88 km (the Te seaward of the outer rise: Te

M) to 14.2 km (the Te landward of the outer rise: Te
m) according to profile P06

of Contreras-Reyes & Osses (2010) (Fig. 2b). The reduction of Te in the trench outer-rise region is commonly considered to be related to a
fractured and hydrated lithosphere as well as to bending-related faults (Christensen & Ruff 1988; Ranero et al. 2003; Contreras-Reyes et al.
2008a).

In addition, previous studies suggested that the bending-relate faults could continue to grow as the plate moves toward the trench (e.g.
Zhou et al. 2015). The reduction of Te was thus assumed to be linear rather than to change suddenly, which may be more similar to reality.
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Flexural modelling of the Manila Trench 2079

This comparison indicates that the results of our 3-D model differ by less than 1 per cent from those of the 2-D finite-difference model of
Contreras-Reyes & Osses (2010) (Fig. 2b).

3.1.3 Constant M0 and V0 with uniform Te and linear load

For the third validation of the 3-D model, M0, V0 and Te are the same as the values shown in Fig. 2(a). An extra line load q = −5.23 × 106 N
m–1 was applied over the elastic plate in this model. The results of this comparison suggest that the model match is excellent, and there are
only minor differences near the trench and the position of the line loads (Fig. 2c). Again, the model error indicates that the difference between
our 3-D model results and those of the 2-D finite-difference model are less than 1 per cent (Fig. 2c).

3.1.4 Point loading with uniform Te

The problem of point loading on the plate is best addressed with axisymmetric solutions. The analytical solution for the deflection w of a
plate under a point load q with a uniform Te is given by (Turcotte & Schubert 2014):

w = qα2

2π D
kei

( r

α

)
, (10)

where the function kei is a Bessel–Kelvin function of zero order (Abramowitz & Stegun 1970), q is the point load that is a function only of
r, and r represents the cylindrical radius or the radial coordinate in the plane of the plate. In this test, the fixed boundary conditions were set
as shown in Fig. 2(d). The point load q is equal to 5.67 × 109 N m-1, and Te is equal to 25.88 km. The model error is less than 4 per cent
(Fig. 2d).

3.1.5 Linear loading and uniform Te

Bending of the lithosphere under the loads of island chains has been observed in many areas, such as the Hawaiian Ridge (Watt 1978) and
the Louisville Ridge (Lyons et al. 2000). The analytical solution of deflection under linear loading is given by (Turcotte & Schubert 2014):

w = V0α
3

8D
e−x/α

(
cos

x

α
+ sin

x

α

)
, (11)

where V0 is the applied linear load, equal to 8.72 × 108 N m–1. As before, Te is set to 28.55 km. Fig. 2(e) shows that the model error is no
more than 5 per cent (Fig. 2e).

3.1.6 Linear loading, in-plane compression and uniform Te

The last benchmark is linear loading on a uniform Te plate, with an additional constant compressional in-plane force Nxx applied along the
x-axis. The analytical solution is given by (Hetenyi 1946):

w = −wee(−|x |/β)

[
β cos

(
x

γ

)
+ γ sin

( |x |
γ

)]
, (12)

where we = V0/2α2�ρg, β and γ are the flexural parameters, which are expressed as:

β =
[(

�ρg

4D

)1/2

+
(

Nx

4D

)]−1/2

(13)

γ =
[(

�ρg

4D

)1/2

−
(

Nx

4D

)]−1/2

. (14)

We can identify the critical buckling load Nc from the form of β and γ : Nc = 2(�ρgD)1/2. Here, the compressional in-plane force is set
0.95Nc, and Te is set to 5 km. The numerical model differs from the analytic formula by no more than 3 per cent (Fig. 2g).

All the three validation tests show a perfect match between our 3-D model and the analytic solution and the 2-D finite-difference models,
which indicates that our 3-D model should accurately simulate the flexural response of a subducted oceanic plate to most loadings.

3.2 Comparison of 2-D and 3-D models with laterally variable Te

Eq. (8) shows that the analytical solution of the shape of a bending oceanic plate at the trench is determined by Te, M0 and V0. Unfortunately,
M0 and V0 cannot be independently measured. A practical way to calculate the Te, M0 and V0 simultaneously is to identify the best-fitting
free-air gravity anomaly (Bry & White 2007; Hunter &Watts 2016) or the bathymetric profile (Garcia-Castellanos et al. 2000; Bry & White
2007; Contreras-Reyes & Osses 2010; Emry et al. 2014; Zhang et al. 2014). However, most 2-D flexural model simulations have ignored the
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lateral variations in flexural parameters, such as Te. Here, we performed four different experiments to analyse the difference between 2-D and
3-D flexural models in estimating the Te. The Te was set to sharp, linear, parabolic and periodic variation, respectively, along the dimension
parallel to the trench, separately and in advance (Fig. 3); V0 = 0.5 × 1012 N m–1 and M0 = 1.0 × 1016 N. All finite-difference models used a
grid spacing 3 km × 3 km within a model space of 600 km × 600 km. The boundary conditions are also shown in Fig. 3.

Initially, we applied the same end loading on different experiments and simulated the 3-D flexural deformation. Furthermore, 200 evenly
distributed deformation profiles perpendicular to the trench were extracted from the 3-D model and regarded as the ‘observed flexures’, which
were then fitted using the 2-D flexure method following Bry & White (2007) and a 3-D inversion method. Finally, we checked the difference
between the 2-D and 3-D inversion results and the 3-D models in estimating Te. The results are displayed in Figs 3(c), (g) and 4(c), (g). The
blue line represents the pre-set Te used in the 3-D model, the red line is 2-D best-fitting Te, and the green line is the 3-D inversion result. The
difference is shown as a percentage between the 2-D and 3-D best-fitting models, and the pre-set Te is shown in Figs 3(d), (h) and 4(d), (h).

In Figs 3(a)–(d), the Te is set to vary sharply from 20 to 30 km along the strike of the trench, and Fig. 3(a) provides a schematic of
the loading configuration. Please note that x is the direction of subduction, and boundary condition 1 (�1) therefore represents the ‘trench’.
Fig. 3(b) shows that under these boundary loadings, the deflection of the plate changes from nearly −1400 m to nearly −800 m gradually
rather than suddenly, as there is interaction (Vy and Mxy) within the plate along the y direction. This interaction generally causes the difference
between the 2-D and 3-D flexural model results in estimating Te (as previous 2-D models usually ignored this interaction). In addition, the
distances from the outer-rise bulge to the trench increase gradually with Te changing from 20 to 30 km. In Figs 3(c) and (d), the results
suggest that the difference between 2-D inverted Te and the initial model can reach nearly 25 per cent at the place where Te changes suddenly,
whereas the difference between 3-D inverted Te and the initial model is under 5 per cent.

In Figs 3(e)–(h), Te changes from 20 to 30 km along the strike of the trench with linear variation. The deflections change from nearly
−1065 m to nearly −825 m linearly, and the distances from the outer-rise bulge to the trench also change linearly. In addition, both Te

differences of the 2-D and 3-D results are relatively small (under 3 per cent; Figs 3g and h).
In Figs 4(a)–(d), the elastic thickness changes in the shape of a parabola: Te = 25 × (y2/360 000 − y/300 + 1.5) km. Under these end

loadings, the shape of the deflections and the distances from the outer-rise bulge to the trench are both similar to a parabola (Fig. 4b). The Te

difference of the 2-D model is closed to 3 per cent, whereas the Te difference of the 3-D model is a little larger (nearly 5 per cent; Figs 4c and
d).

In Figs 4(e)–(h), the elastic thickness is set to a periodic variation with Te = 25 × [1 + 0.25cos (yπ /100)] km. Both the deflections and the
distances from the outer-rise bulge to the trench therefore change periodically (Fig. 4f). However, unlike the previous groups of experiments,
the Te difference of the 2-D model can reach nearly 30 per cent here, whereas the Te difference of the 3-D model is around 15 per cent (Figs 4g
and h).

These results show that 3-D inversion obtains a relatively high accuracy to estimate the Te of the bending plate, especially when sharp
lateral variation in Te exists.

3.3 The difference between 2-D and 3-D models in estimating the Te

After employing dozens of different calculation models, we found that the ratio of the variation in Te wavelength to the flexural wavelength of
the plate can affect the accuracy of estimated Te using a 2-D model. The flexural wavelength of a thin plate is given by: L p = 2πα. Fig. 5(a)
illustrates this relationship: L is the sharp variation distance of Te (from Te

a to Te
b; Te

b is equal to half of Te
a here), which represents the

variation wavelength of Te here. Our experimental results show that the relation between the maximum Te difference and the Te wavelength
variation ratio to the flexural wavelength of the plate (L/2πα, α calculated using Te

a here) can be approximated as a power function (Fig. 5b).
Thus, the faster the Te changes along-strike, the less accurate the 2-D plate model.

This phenomenon also demonstrates that a simple oceanic lithosphere scenario with a gentle change of Te can be reasonably modelled
using a 2-D approximation. However, for complex geological settings with laterally variable flexural parameters (M0, V0 and Te), the transition
from subduction zone to collision zone, or at the subduction of continent–ocean transition, the 2-D model no longer applies.

4 . F L E X U R A L M O D E L L I N G O F T H E N O RT H E R N M O S T M A N I L A T R E N C H

4.1 Geological setting

The Manila Trench, located at the east of the South China Sea (SCS), was formed by the subduction of the Eurasian Plate underneath the
Philippine Sea Plate (Bowin et al. 1978; Taylor & Hayes 1983; Hayes & Lewis 1984). A characteristic feature of this convergent boundary is
a gradual change from normal subduction in the south to a collisional regime in the north that produces the Taiwan orogeny. GPS data suggest
that the Philippine Sea Plate is moving to the northwest at the rate of 71 mm yr–1 (Seno et al. 1993), and the convergence rate between the
Eurasian Plate and central Luzon varies from 20 to 100 mm yr–1 (Fig. 6; Galgana et al. 2007). The interpreted timing of seafloor spreading in
the northern SCS based on magnetic anomaly data suggests that the continent–ocean boundary intersects the Manila Trench at ∼19◦N (yellow
dashed line shown in Fig. 6, Briais et al. 1993). However, multichannel seismic (MCS) reflection imaging suggests that the intersection of
the continent–ocean boundary and the Manila Trench is at ∼20◦N (Eakin et al. 2014). The Taiwan Mountain Belt, which is the northward
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Figure 7. Crustal structure of the northern Manila Trench and Taiwan collision zone. (a) Crustal structure of transect T4A from McIntosh et al. (2013).
NLA—North Luzon Arc. Note that the profile starts from 50 km. (b) Crustal structure of transect T2933 from McIntosh et al. (2013). MT—Manila Trench.
HP—Hengchun Peninsula. (c) Crustal structure of transect T2 from Eakin et al. (2014). HB—Huatung Basin. (d) Crustal structure of transect T1 from Eakin
et al. (2014). NLT—North Luzon Trough.

extension of the Manila Trench, began to form in the Mid-Miocene and was uplifted following arc–continent collision in the last 6.5 Ma.
The geological and geophysical features of the Taiwan arc–continent collision indicate that it can be divided into four geodynamic processes:
intraoceanic subduction (south of 21◦20′N); initial arc–continent collision (21◦20′–22◦40′N), advanced arc–continent collision (22◦40′–24◦

N); and arc collapse/subduction (24◦–24◦30′N; Huang et al. 2000; Fig. 6).
Recently, several wide-angle seismic profiles were acquired across the northernmost Manila Trench, at the transition zone from subduction

(south) to collision (north) (Figs 7a–d) (McIntosh et al. 2013; Eakin et al. 2014). The velocity structure profiles across southern Taiwan, at
∼22.7◦N (T4A in Fig. 7a), and the Hengchun Peninsula of southernmost Taiwan, at ∼22.2◦N (T2399 in Fig. 7b), indicate that the crustal
thickness is ∼9–15 km (McIntosh et al. 2013). The velocity structure profiles of the incipient arc–continent collision (T2 and T1 in the
Fig. 6) suggest that it extends to hyperextended continental crust (∼10–15 km thick; Figs 7c and d), and a multichannel seismic (MCS)
reflection image shows subduction of normal oceanic crust south of ∼22◦N (Eakin et al. 2014). These velocity structure profiles suggest that
the tectonic setting varies from the Manila Trench to the Taiwan arc–continent collision zone from south to north. The crust of the Eurasian
Plate thickens from oceanic crust to transitional crust and then to continental crust. Although Te has little correlation with any geological or
physical boundary within the lithosphere (McNutt et al. 1988; Bechtel et al. 1990), these crustal structure variations can help constrain the
flexural morphology of the subducted plate when estimating Te. In addition, based on comparison with bathymetric profiles, seismic profiles
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Figure 8. Schematic diagram of the 3-D flexural models of the Manila Trench and Taiwan collision zone (modified from Wang & Lee 2011; Zhang et al.
2014). Te

M and Te
m are two characteristic values of effective elastic thickness. Te

M is the effective elastic thickness where the plate curvature is negligible, and
Te

m is the effective elastic thickness that is reduced because of inelastic deformation (faults) or variable crustal thickness. The red line represents the observed
deflection of the subducted plate. The effects of surface loading and boundary loading (−V0 and −M0) are both considered.

can help minimize the interference of sediments, especially in areas with thick deposits. Thick sedimentary deposits can make the trench
depth shallow, and thus result in bathymetry (and even gravity data) that cannot reflect the deflection of the lithosphere.

In this study, we simulate these bending morphologies using 2-D and 3-D models respectively, assuming the flexural parameters listed
in Table 1. The basement morphologies of the four parallel profiles (T1, T2, T2933 and T4A) were extracted as the input for our flexural
modelling (basements indicated by solid red lines in Figs 7a-d). In contrast from the previous 2-D flexural models of the Manila Trench
(Chang et al. 2012) and Central Taiwan (Lin & Watts 2002; Mouthereau & Petit 2003; Tensi et al. 2006; Wang & Lee 2011), our 3-D model
accounts for both surface loading (accretionary wedge or mountain) and subsurface loading (boundary bending moment and vertical force)
(Fig. 8). To avoid edge effects, the 3-D model dimensions comprise a rectangular area between profiles T1 and T4A, shown in Fig. 6, and
has been suitably extended to the west with a length of 400 km, similar to Wang & Lee (2011). Along the dimension parallel to the trench
(collision zone), boundary loads M0(y), V0(y) can change arbitrarily. For simplicity, we assigned values to four special nodes of M0 (y) and
V0(y), which corresponds to the four profiles (T1, T2, T2933 and T4A). Values of other nodes were interpolated from the four special nodes.

4.2 Model results

The 2-D model results shown in Fig. 9 suggest that from the Manila Trench to the Taiwan collision zone, Te
M ranges from 20.2 to 32.9 km,

and Te
m ranges from 8.5 to 28.6 km. The Te of continental crust is greater than that of transitional and oceanic crust at the Manila Trench.

The 3-D model results show a similar trend in Te (Fig. 10). However, the 3-D model suggests sharp variation of Te
M in the area between

profiles T2 and T2933 (21◦30′–22◦N), which cannot be captured by the 2-D model (Fig. 10b). This sharp variation of Te
M corresponds to the

continent–ocean transition of the northern margin of the SCS.
Furthermore, we found that using a continuous 3-D model to fit the bending profiles T2 and T2933 at the same time, we must add an

upward vertical force at the plate boundary in profile T2 (Fig. 10a). Otherwise, the plate along the profile T2 would be pulled downward by
the lateral force induced from profile T2933. This finding may imply that inelastic deformation existed in the area between the profiles T2
and T2933, such as plate tearing or viscous deformation. Another possible reason is that a subducted buoyant plateau was present in this area
(Fan et al. 2016).

4.3 Discussion

4.3.1 The in-plane force in the Manila Trench

Many studies have shown that the in-plane force is an important parameter when estimating Te (Karner 1986; Karner et al. 1993; Mueller et al.
1996; Garcia-Castellanos et al. 2000; Craig & Copley 2014; Emry et al. 2014; Zhou et al. 2015; Zhou & Lin 2018). Karner (1983) indicated
that the in-plane force played a role in modifying plate rigidity. A tensile in-plane force increases plate rigidity, whereas a compressive
in-plane force decreases plate rigidity. Garcia-Castellanos et al. (2000) found that to minimize the mean difference between the calculated
and observed bathymetry in the Tonga and Kermadec trenches, a tensile horizontal force was needed to increase the deflection of the plate
and reduce the amplitude of the outer rise (forebulge) simultaneously. Our numerical tests shows that a compressive horizontal force could
increase the amplitude of the outer rise (forebulge) (Fig. 2f). The seismic profile across the Western Taiwan Foreland Basin shows a regional
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rheology laws of Byerlee (1978) (red lines), Mei et al. (2010) (blue lines), and Hirth & Kohlstedt (2003) (green lines). At 30 Ma, the Tm is nearly 40.7 km,
which is larger than the Te

M at the same age.

unconformity, which is the result of regional uplift of the forebulge due to the loading of the Taiwan orogen, erosion, and subsequent migration
of the forebulge (Figs 6 and 11; Chang et al. 2012). We infer that the compressive horizontal force produced by collision between the Luzon
arc and the Chinese continental margin is a main factor for the formation of the forebulge. However, in the northern Manila Trench, no
apparent forebulge is observed in the seismic profiles (Figs 7a–d). Thus, a tensile horizontal force may be applied on the subducted plate,
just as in the cases of the Tonga and Kermadec trenches (Garcia-Castellanos et al. 2000). Another possible interpretation is that the crustal
heterogeneity of the continent–ocean boundary hinders the propagation of the flexural wave and reshapes the morphology of the damping
wave from theoretical expectations (Chang et al. 2012).

4.3.2 The rheology of the lithosphere and seismicity

Goetze & Evans (1979) suggested that the yield strength envelope (YSE) derived from experimental rock mechanics data could be used
to predict Te. This predicted Te in turn can help to evaluate rheological parameters and test the predictions of laboratory-derived flow laws
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Figure 13. Seismicity (data from ISC) and focal mechanisms (data from the Global CMT project data catalogue) of the northernmost Manila Trench. A, B, C
and D are profiles along the four OBS profiles. The red lines are the basement extracted from OBS profiles, red dashed lines represent the basement inferred
from the seismicity, and the blue dotted lines represent the calculated bottom of the mechanical layer (Tm = 40.7 km at 30 Ma based on a YSE similar to that
of Hunter & Watts 2016).
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(Panteleyev & Diament 1993; Hunter & Watts 2016). Hunter & Watts (2016) estimated the Te of circum-Pacific subduction zones using a
uniform Te model and a variable Te model, respectively. By comparing the observed Te based on the elastic model to the predicted Te based
on different YSEs and the ε elastic–perfectly plastic model, they found that both the landward Te and the seaward Te increased with oceanic
plate age, following the 342 ± 22 and 671 ± 55 ◦C oceanic isotherms based on a cooling plate model, respectively. They then indicated
that the low-temperature plasticity (LTP) flow laws of Goetze (1978), Evans & Goetze (1979), Raterron et al. (2004) and Mei et al. (2010)
all showed good fits with the estimated Te of circum-Pacific subduction zones (assuming a constant strain rate 1016 s−1). Along the strike of
the northernmost Manila Trench, both Te

M and Te
m increase with plate age, which is consistent with the results of Hunter & Watts (2016).

The oceanic lithosphere mechanical thickness (Tmo) is 40.7 km at ∼30 Ma based on the YSE similar to that of Hunter & Watts (2016) [a
combination of the rheology laws of Byerlee (1978), Mei et al. (2010) and Hirth & Kohlstedt (2003); Fig. 12b]. Here, Tmo represents the
depth at which the yield strength falls below 1 per cent of the overburden pressure (Hunter & Watts 2016). The mechanical thickness of
the continental lithosphere (Tmc) of the Western Taiwan Foreland Basin is 40–50 km (Mouthereau & Petit 2003). However, the Te

M in this
area is only 26.8 ± 4.6 km (from ∼20 to 33 km), which is similar to the Te

M of circum-Pacific subduction zones at ∼30 Ma (Based on
Hunter & Watts 2016, Te

M varied from 26.1 to 32.3 km), and a little larger than Te
M of Zhang et al. (2018) (20.3 ± 5.0 km; Fig. 12a). This

value is much smaller than Tm (Tmo and Tmc), which suggests that these flow lows are too strong to fit the observations. We infer that this
discrepancy may be owing to two reasons. One is that a great deal of magmatic activity occurred during the spreading of the SCS (Fan et al.
2017), which may have changed the thermal structure of the lithosphere and thus the rheological structure. Another possible reason is that
the YSE of continent–ocean transition may be more complex than that of the oceanic lithosphere. Therefore, it is not appropriate to constrain
the deformation mechanism of the continent–ocean transition based on a simple rheological flow law of the oceanic lithosphere.

Seismicity is frequently associated with brittle deformation in the lithosphere. Mouthereau & Petit (2003) investigated the rheological
structure and distribution of crustal earthquakes in the Western Taiwan Foreland Basin, and found that most earthquakes depths were less
than 15 km. In contrast, at the outer rise of the Manila Trench, the depth of seismicity was more than 50 km (Fig. 13). The seismicity profiles
show that the slab dip increases from south to north (slab dip changes from ∼24◦ to ∼55◦; Fig. 13). This great change in slab dip over such a
short distance also implies that the subducted plate may be discontinuous in the area between 21◦N and 22◦N.

5 C O N C LU S I O N

The 3-D flexural method presented herein is applicable to convergent belts such as subduction and collision zones. The 3-D model was
compared with a simpler 2-D formulation to estimate the Te of subducting lithosphere. We presented a case study for bending at the
northernmost region of the Manila Trench. The following conclusions were reached. (1) When simulating the bending of oceanic lithosphere
at subduction zones, where Te changes smoothly in general, the 2-D model is similar to the 3-D model and can be used where the deviation
in Te is less than 5 per cent. However, for the area where sharp variation of Te exists, such as at the transition from the subduction zone to the
collision zone, the 3-D model better recreates the abrupt change along-strike. (2) The Te of the subducting lithosphere may change sharply
at the northern margin of the SCS. We propose that this change may result from the non-uniform deformation of the subducted plate, and/or
subducted plate tearing.
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A P P E N D I X : F L E X U R A L M O D E L L I N G

The flexure of the lithosphere floating on an inviscid layer (asthenosphere) is governed by the partial differential equation (eq. 1), in which
the derivative terms can be re-written using the following centred finite difference operators at a point (i) with regular spacings �x and �y:

∂w

∂x

∣∣∣∣ (i) ≈ w (i + 1) − w (i − 1)

2�x
∂w

∂y

∣∣∣∣ (i) ≈ w(i − m) − w(i + m)

2�y
∂2w

∂x2

∣∣∣∣ (i) ≈ w (i + 1) − 2w (i) + w (i − 1)

�x2

∂2w

∂ y2

∣∣∣∣ (i) ≈ w (i − m) − 2w (i) + w (i + m)

�y2

∂2w

∂x∂y

∣∣∣∣ (i) ≈ w (i − m + 1) + w (i + m − 1) − w (i − m − 1) − w (i + m + 1)

4�x�y
∂3w

∂x3

∣∣∣∣ (i) ≈ w (i + 2) − 2w (i + 1) + w (i − 1) − w (i − 2)

2�x3

∂3w

∂ y3

∣∣∣∣ (i) ≈ w (i − 2m) − 2w (i − m) + 2w (i + m) − w (i + 2m)

2�y3

∂3w

∂x∂ y2

∣∣∣∣ (i) ≈ w (i + m + 1) + w(i − m + 1) − w(i − m − 1) − w(i + m − 1) + 2w(i − 1) − 2w(i + 1)

2�x�y2

∂3w

∂x2∂y

∣∣∣∣ (i) ≈ w (i − m − 1) + w (i − m + 1) − w (i + m + 1) − w (i + m − 1) + 2w(i + m) − 2w(i − m)

2�x2�y
∂4w

∂x4

∣∣∣∣ (i) ≈ 6w (i) − 4 [w (i + 1) + w (i − 1)] + w (i + 2) + w (i − 2)

�x4

∂4w

∂ y4

∣∣∣∣ (i) ≈ 6w (i) − 4 [w (i + m) + w (i − m)] + w (i + 2m) + w (i − 2m)

�y4

∂4w

∂x2∂ y2

∣∣∣∣ (i) ≈ 4w (i) − 2 [w (i + 1) + w (i − 1) + w (i + m) + w (i − m)] + w (i + m + 1) + w (i − m + 1) + w (i − m − 1) + w (i + m − 1)

�x2�y2
.

(A1)

Here we use (i), rather than (i, j) to represent the sequence number of nodes, which makes programming easier. i is from 1 to n × m (The
square are divided into n rows and m column). It shows that each point (i) of the regular grid connects to its 12 closest neighbours (Fig. A1).
The derivative terms of flexural rigidity D can be also rewritten by the centred finite difference operators with regular spacings �x and �y:

Dx = ∂ D

∂x

∣∣∣∣ (i) ≈ D (i + 1) − D (i − 1)

2�x

Dy = ∂ D

∂y

∣∣∣∣ (i) ≈ D (i − m) − D (i + m)

2�y

Dxx = ∂2 D

∂x2

∣∣∣∣ (i) ≈ D (i + 1) − 2D (i) + D (i − 1)

�x2

Dyy = ∂2 D

∂x2

∣∣∣∣ (i) ≈ D (i − m) − 2D (i) + D (i + m)

�y2

Dxy = ∂2 D

∂x∂y

∣∣∣∣ (i) ≈ D (i − m + 1) + D (i + m − 1) − D (i − m − 1) − D (i + m + 1)

�x�y
(A2)
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Figure A1. Sketch map of the finite difference scheme.

The eq. (1) reduces to a set of coupled linear equations, which can be expressed as matrix form: AW = Q (eq. 7). A is the coefficient
matrix, W is the vector of unknown deflection w and Q is the loading vector, respectively, given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai−2m

. . .

Ai−m−1

Ai−m

Ai−m+1

. . .

Ai−2

Ai−1

Ai

Ai+1

Ai+2

. . .

Ai+m−1

Ai+m

Ai+m+1

. . .

Ai+2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W =
[
wi−2m . . . wi−m−1 wi−m wi−m+1 · · · wi−2 wi−1 wi wi+1 wi+2 · · · wi+m−1 wi+m wi+m+1 · · · wi+2m

]T

Q =
[

qi−2m . . . qi−m−1 qi−m qi−m+1 · · · qi−2 qi−1 qi qi+1 qi+2 · · · qi+m−1 qi+m qi+m+1 · · · qi+2m

]T
(A3)
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Ai−2m = Dy

�y3
+ D

�y4
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�x�y2
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�y2

)
− 2Dyy

(
1

�y2
+ v
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1
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�x�y2
− Dy

�x2�y
+ Dxy (1 − v)
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1
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1
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�y2

Ai+m+1 = Dx

�x�y2
− Dy
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Ai+2m = − Dy

�y3
+ D

�y4
. (A4)

Following this, nodes at all boundary conditions can be also rewritten by finite difference operators. W then can be solved according to
the combination of eqs (A1)–(A4) and boundary conditions.
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