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* Overview of induced seismicity in the mid-continent in the US

Oklahoma earthquakes and tectonics/geology.

Oklahoma faults and stress field.

* Wastewater injection, fault activations, earthquake source process.
e Case study from Oklahoma

e Hydraulic fracturing induced earthquakes in Oklahoma.



Induced earthquakes
in Central & Eastern
US started to
increase around
2009, peaked in
2014 & 2015,
gradually decline
after 2016, but still
above background
seismicity level
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Oklahoma projected
2018 ground motion
hazard is high
compared to the rest
of central US when
Incorporating
induced seismicity

Based on the average of horizontal spectral response acceleration for 1.0-s period and peak ground acceleration
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ceccccscoe C) Oil Production and Wastewater Disposal

Common procedures lead to induced seismicity.

In mid-continent of US: z
> > > N

(1) Small percentage from hydraulic fracturing; T

SEALING LAYER
(2) Small percentage from enhanced oil recovery PRODUCTION FORMATION
(sometimes referred to as water flooding;
(3) Large percentage (dominantly) from wastewater R
disposal. DISPOSAL FORMATION e —_
CRYSTALLINE BASEMENT

A) Hydraulic Fracturing of a B) Oil Production D) Enhanced Oil Recovery
Production Well
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Oklahoma Induced Earthquakes

* Questions #1: What is the relationship between earthquake
occurrence and tectonics/geology?
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Where are the earthquakes?
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Wastewater disposal induced earthquakes are
mostly in the Anadarko Shelf and Cherokee
Platform (shallow basement depth)

Hydraulic fracturing induced earthquakes are
mostly in the Anadarko Basin and Arkoma Basin
(deeper basement depth)

All the M>5 earthquake occurred along splay faults
from major fault systems. None of the faults that
hosted M>5 earthquakes were previously mapped.



Top

TWT (s)

1. Oklahoma’s basement rocks
become seismically unstable at
conditions relevant to the dominant
hypocentral depths of the recent
earthquakes.

2. Oklahoma seismogenic basement
faults penetrate the overlying
sedimentary sequences,
representing pathways for
wastewater migration
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Mapping
seismogenic faults
from earthquakes

@® Data: combined relocations

from Chen [2016] and
Schoenball and Ellsworth
[2017a]

® Methods:

Fault mapping: hierarchical
clustering

Fault characterization principal
component analysis (PCA)
(Vidale and Shearer, 2006)

Background
mode

[ Cluster_.f
| mode |

Rescaled Distance log R

PCA applied to an ellipsoidically shaped point cloud

Rescaled Time log T

Schoenball and Ellsworth, 2017b

Qin et al., 2019




Seismogenic fault
orientations

@® Observations:

Fault strike: mainly in the
ranges of [55 75°] and
[105 125°], conjugate
patterns relative to oy
orientation of N85°E.

Fault dip: over 80% of
seismogenic faults are steeply
dipping (dip>70°).
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b Sedimentaryfaults ¢ Seismogenicfaults ¢ Sedimentaryfaults @ Fracture, n=241

I I Sei ic faul
Seismogenic and ? Westmess P Westmes East,me36 East,ne154

Sedimentary (from fault
database) Faults " %% )( o

f _ Kansas

- West: NE for both types of faults T Oklals i T e,
(dominance of NE basement TN AR
rooted splays) & Fairview

8/ PSS T R
- East: NE and NW trends are H | ./ T#Cushing
reactivated; the sedimentary I | =377

faults (NNE to NE, EW) possibly
associated with the large Nozeisw |
basement-rooted NNE faults. 3 “ g

. Abuckle Uplift e
p : e "&309\:\

BRSSP =S SO
Mill Creek © ;

- Exposed basement fracture: T ONAS N |
similar conjugate pattern S . 7 Tshomingo 7T .

@ common tectonic control of
seismogenic and geology faults

Qin et al., 2019



Oklahoma Induced Earthquakes

e Question #2: What is the background stress field in Oklahoma, and
how optimally oriented are Oklahoma faults?



Stress field and fault orientation influence fault

activation

a) Experiment setup

Fault optimally oriented
in the stress field for rupture

Understress — 0 Understress — 1

Fault non-optimally oriented
in the stress field for rupture
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* The experiment objective:

Rupture behaviors for optimally and non-
optimally oriented faults

e Definition of understress:

Understress near 0 means optimally oriented, and
understress of 1 means non-optimally oriented.

Tp

understress =

* Fault rupture behaviors:

Pressure-controlled rupture for non-
optimally oriented faults VS uncontrolled

Non-critically stressed

rupture for optimally oriented faults




Mapping Oklahoma stress field and fault stress state

@ Invert stress field using 2047 focal
mechanism solutions using MSATSI
(Martinez-Garzon et al., 2014).

0.7 @ Mapping fluid pore pressure Focal
@ Mechanism Tomography (FMT)

Shear stress
o
©

0.6 @
os 5 (Terakawa et al., 2010).
8 @ Calculate understress for each
0.4 5
fault:
0.3 Understress near 0 means optimally oriented, and
understress of 1 means non-optimally oriented.
0.2 Ty, — To
understress =
0.1 T

p

Normal stress

Qin et al., 2019



Stress field result

e Central OK: strike-slip faulting;

* North and northwest OK: oblique
normal faulting

* Dominant gy, 4, 80°--90°

* West of Nemaha: negative correlation
between R value and pore pressure,
possibly explained by poroelastic
effects (pore pressure change causes
changes on the elastic stress field)
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Fault Stress state

» 78% faults are critically stressed
with understress smaller than 0.2.

* Non-optimally oriented faults
being reactivated, due to locally
high pore pressure or other
factors, e.g., earthquakes
interactions.
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Different temporal evolutions of M>5 earthquake
sequences may be influenced by different stress state
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* The faults in Prague, Pawnee, and Cushing were critically stressed (understress<0.02). Predominantly
mainshock-aftershock sequences

* The fault in Fairview: the least optimally oriented (understress 0.1), the mainshock (understress 0.2). A

swarm-type sequence



Summary of stress field and geology

e Oklahoma seismogenic faults have the same tectonic origin with sedimentary faults,
and fault connectivity with sedimentary layer provide possible fluid pathway.

* Although the majority of the seismogenic faults (NE and NW trending) are optimally
oriented relative to the local stress field, some non-optimally oriented faults are
identified.

* Fault stress state and orientation may influence temporal earthquake sequence
evolution (e.g., Fairview versus other M5 sequences).



Oklahoma Induced Earthquakes

* Question #3: How does waste injection affect fault activation and
source processes?

 Statewide analysis & Individual cluster analysis



Strong correlation between earthquake rate
and wastewater injection
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Decline in injection volume drives the
decline in seismicity

Most of the wastewater comes from co-produced water from oil and gas wells. The median water:oil and
water:gas ratios were 7.4 and 9.8 for wells in western Oklahoma (Murray, 2014).



Wastewater disposal can
affect seismicity up to 50 km
away with diffusivities
around 1.5 m?/s

e Automatic diffusion curve fitting found the
starting time of diffusive migration Matches the
changes in injection rate (sharp increase in
western OK, and peak injection in eastern OK).
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Diffusive migration within
individual clusters has
diffusivities around 0.03 m?/s

* About 60% of clusters show statistically significant
migration, the percentage is similar to southern
California.

* The diffusivity of basement clusters are much lower
than large-scale pattern, and are similar to other
crustal swarms in tectonic earthquakes.

* There is no clear directional migration pattern from
injection zones. . EmPiricaI CDE for downvyardl migrat‘ion
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Saltwater Disposal Well
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Summary of
wastewater disposal
triggering from
statewide analysis

(1)

(2)

(3)

(4)

Long-range triggering is
facilitated by high diffusivity
within the Arbuckle layer.

Basement faults have relatively
lower diffusivity, similar to
tectonic active regions.

The migration direction along
basement faults may differ from
large-scale migration direction.

A majority of diffusivity
migrating clusters exhibit
downward migration, consistent
with stress triggering from the
overlaying Arbuckle group
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(1) Strong correlation between injection volume
from nearest three wells and seismicity
(2) Clear diffusive migration starting from July

2014, with diffusivity of 0.04 m?/s. Chen et al.. 2018

Seismicity migration from July 2014.
FoIIowmg diffusivity of 0.04 m?%/s

—_
Q
N

I
T2 |T3 | T4

.

w
S I S RS 0 DS I S B |

|

|

TH |
T
|

N

.

—

distance to the first earthquake (km)

o
&)

I
I
I
I
I
I
I
I
| "y
i LG
I o |*
I I
| $°
| I
| I
I I
I I
I I
I I
I I

0
12/2013 05/201 4 10/2014 03/201 5 08/201 5 12/2015

X 10° . ' ' ' '
Cumulative Events |and Voll.||me |
(a) T1 I T2 | T3 T4
6L | |
| | |
| | |
| | |
| | [ -4 10000
| | |
& | | | ‘
3 | | 418000
£ | |
O al | | |
S 3 | | 36000
| |
| |
| |
| [ 3000
L | |
All wells | |
=2 T T | 1000
ey w? | | | 15
X 103 ' 1 1 1 1 X 10
Cumulative Momeqt and Vqlumq
(c) T1 I T2 | T3 T4
6L | | | 110
| | | |
| | | |
| | | |
| | | | 48
| | | | E
E o | <
3 | | | 6 é
Oal | | |
3 o
= | | | =
| | |
| |
| | | 43
| |
1L | | | |
All wells | | well 3
— ';Z 7 1 | 1
| . | .
12/2013 05/2014 10/2014 03/2015 08/2015 12/2015

Date



(a) 2.5

(1) Clear low stress drop during the
early stage of fault activation using
two different methods.

(2) The earliest seismicity (red dots)
are concentrated within a small patch

of low stress drop. (b)
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Oklahoma Induced Earthquakes

e Question #4: How does hydraulic fracturing affect earthquake
occurrence?
» Statewide analysis & Detailed seismic interpretation in one area



Wastewater Disposal (left) VS
Hydraulic Fracturing (right)

colored polygons representing the predominant basins (Anadarko: cyan, ,
Marietta: pink, and ) and platforms (Anadarko: yellow and Cherokee: orange)
Wastewater disposal (WD) wells Hydraulic Fracturing (HF) wells
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3D seismic data
and earthquakes

Target formation for
unconventional exploitation:
Mississippian Woodford and
Meramec

Fracture mapping:
Woodford/Meramec, Hunton
Group, Arbuckle Group
(wastewater injection layer in
Oklahoma), Top of basement
Earthquakes: From OGS
catalog, correlate with mapped
faults.
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Seismic
attribute
analysis

Fault offset
only,

well imaged

Fault offset, if
any, below
resolution

Using bandlimited analysis
for seismic data: 30-55 Hz.

Aberrancy and Curvature
best illuminate basement
rooted faults

N-S, NW and NE trending
faults extend from the
basement to shallower
sediment layers Hunton
and Woodford formations.

Fault Expression on Seismic Attributes
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curvature
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conjugate faulting

Or poor imaging
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any, below
resolution
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change of
curvature
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Curvature attribute illuminates lineaments that
host earthquakes, reveals more faults than OGS
fault database.
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Summary of wastewater disposal and hydraulic fracturing

Large-scale long-range triggering is facilitated by high diffusivity in the Arbuckle group
where wastewater disposal occurred.

Hydraulic fracturing operation has narrower space influence windows than
wastewater disposal wells.

Oklahoma basement rock behaves similarly to crystalline basement in other
tectonically active regions in terms of seismicity clustering.

* Fluid injection may influence earthquake source parameters during fault activation.
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