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Abstract  In the Sichuan Basin, seismic activity has been low historically, but in the past few decades, a series of moderate to
strong earthquakes have occurred. Especially since 2015, earthquake activity has seen an unprecedented continuous growth
trend, and the magnitude of events is increasing. Following the M5.7 Xingwen earthquake on 18 Dec. 2018, which was suggested
to be induced by shale gas hydraulic fracturing, a swarm of earthquakes with a maximum magnitude up to M6.0 struck
Changning and the surrounding counties. Questions arose about the possible involvement of industrial actions in these de-
structive events. In fact, underground fluid injection in salt mine fields has been occurring in the Sichuan Basin for more than
70 years. Disposal of wastewater in natural gas fields has also continued for about 40 years. Since 2008, injection for shale gas
development in the southern Sichuan Basin has increased rapidly. The possible link between the increasing seismicity and
increasing injection activity is an important issue. Although surrounded by seismically active zones to the southwest and
northwest, the Sichuan Basin is a rather stable region with a wide range of geological settings. First, we present a brief review of
earthquakes of magnitude 5 or higher since 1600 to obtain the long-term event rate and explore the possible link between the
rapidly increasing trend of seismic activity and industrial injection activities in recent decades. Second, based on a review of
previous research results, combined with the latest data, we describe a comprehensive analysis of the characteristics and
occurrence conditions of natural and injection-induced major seismic clusters in the Sichuan Basin since 1700. Finally, we list
some conclusions and insights, which provide a better understanding of why damaging events occur so that they can either be
avoided or mitigated, point out scientific questions that need urgent research, and propose a general framework based on
geomechanics for assessment and management of earthquake-related risks.
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Tectonic background of Sichuan Basin
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Major earthquakes within Sichuan Basin
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Insights from nature-origin EQs
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*

Studies on induced seismicity in SCB

Kongtan NG field

M5.4, 1980-2008

Du et al., 2002

Seismic activity basically
disappeared

Rongchang NG field

MS5.2, 1980-2013
1980s — 2006 seismicity
correlated with injections
Lei et al., 2008; Ding et al., 2004
Post-injection seismicity with M5
Wang et al., 2020
Shale HF started in 2019

Huangjiachang NG field

M4.4,2009-2010
Leietal., 2013; Zhang et al., 2012

Decay quickly after shut-down

*

Ziliujing salt mine

- M4.6-5.0, 1947-,
Zhang et al., 1993

Luocheng-Changshan
—  M4.2, 1970-, Lv etal., 2009

Changmng

M4.8, -1971-, Yuan et al., 2008
— 1990-2015, Sunetal, 2017

— 2019 M6 swarm
Chen et al., 2020
Jiang et al., 2020
Leietal., 2019;
Li et al., 2020; ->RupDir
Liu et al., 2020;
Long et al., 2020;->
Wang et al., 2020;->InSAR
Yietal., 2019;
Zuo et al., 2020;

*

*  Wei-Rong shale gas

2008-, M5.4
Chen, et al., 2018
Lei et al., 2020
Sheng et al., 2020

* Changning

M5.7, 10 M4+, 4 M5+
He et al., 2019

Jia et al., 2020
Leietal., 2017; 2019

Meng et al., 2019
Tan et al., 2020
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Insights from 1induced seismicity

* Both long-term (<~10 MPa) ‘| Equivalent to natural earthquakes,
and short-term (>~60 MPa) injections but all shows shallow CMT depth

induced earthquakes up to M5.5~6.1

» Caused by reaction of pre-existing faults

a) Luochang-Jianwu syncline Changning anticline Weiyuan, Rongchang
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« Under different stress regime

[ ) Fluid pressure plays dominated role 0 90 180 70 360 0 90 180 70 3600 90 180 70 360

Strike angle relative to ulmulh of o, (deg)

Coulomb Failure Criteria

* Show very low aftershock productivity

Critical regime
Subcritical regime

AT =At/(Aa-AP)/u

« Kept active during injection and after
shout-down of long injection

* Individual events show no difference
with natural earthquakes

» Shows site dependence governing by ¥

Salt mining
HF

bo o

— Density, size, orientation, maturity of fault Y o @
- Stress regime A7, by fluid pressure

&
Negative A7 by poroelastic effect

Zone of injection
or extraction
<= Zone of overpressure

— Injection parameters
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Key 1ssues remaining poorly understood

* Link with injection operation is not
very clear due to the lack of detailed
injection data.

* Precise seismogenic structures
* Rupture process of large events
e Conditions of large events

Why large events shows very low
aftershock productivity?

e Predictability?

« Can large event be effectively avoided

Understandings
can be greatly
improved with
detailed water
injection data and
3D seismic data
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Changning earthquake

* Rupture directivity:

northwestward (Li et al., 2020)

« Strike: longer, 14~17km

* Dip: shallow & narrow, ~4 km
* Not mapped

 Complex geometry

InSAR

I-segment

D31° (Wanget al)
D27° (Yang et al.)
2-segments

D31, D90 (Sun et al.)

CMT

122/51/28 (Lei et al.)
131/51/36 (Yietal.)
Doublet

170/35/111+116/72/5 (Liu et al.)

— Multi segments of different geometry

» East segment: dip=30

*  West segment: dip=30-90, Controversial

Source faults can not be fingered out by hypocenter distribution of

aftershocks
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Weiyuan earthquakes
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Key problems 1n futural studies

» In-depth analysis of past cases to deepen and refine our understandings
— Seismogenic structures
— Rupture process of large event e Industry-academia-government

— Condition of damaging events collaboration
¢ Government:

— Reassessment Ve .
) o Policies and regulations
— Risk prediction technology
. o * Industry:
 Sign of fault reactivation? Share their data, joint-work
« Statistics of induced seismicity 6 Acadaite
“>» Promotion of integrated obs. & research ngidis‘lppm’t o Gibtasinye ind Sxits
production

* Monitoring, detecting sign of fault reactivation
* Feedback to operator

 Fundemental research

— Slip behaviours and hydraulic characteristics of

faults of different maturities and host rocks * Laboratory study

— Role of localized overpressure on fault reactivation Numerical study

. . « R I 1 1 t
— Risk reduction technology SSCIVOTE Stale expetimen

 Management and control framework of risks related with fault reactivation and
induced earthquakes
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Stress perturbation
on fault
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o o

4 o
o Positive
AT by fluid pressure

AT, by poroelastic effect

Zone of injection
or extraction

&
yativ
Negative <> Zone ofoverpressure

« Distribution SP govern by

— Distance to injection
— Connectivity
— Permeability

e Stress criticality govern by

— Stress pattern

— Fault orientation

e Faut reactivation govern by

— SP, SC
— Frictional properties
— Healing status, roughness
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Preliminary results of an ongoing study
based on rate- and state-dependent law
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Huang et al. in preparation
® Under sufficiently large stress fluid pressure (in possible range of HF), a fault of
tectonic stress far below the critical point can be reactivated
® Stress criticality of the fault, distribution (range, position, increasing rate) of fluid
pressure on the fault zone play a dominant
® Slow-slip events even in velocity-weakening zone
® Needs experimental study (Laboratory and field) to verify and make it practically
useful
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Why large events are out runner?

300

Leietal., 2014

* Larger event

N F1/MPa
— o

o [f] |

— Out runner, Dragon-king

T T 1 17171711

— Solitary, fewer aftershocks
» Possible factors
— Fault is healed

— Rough surface Limestone demonstrate ductile
— Unsustainable driving fluid fracturing with some brittle event

— Ruptured/smoothed fault _ 3 |
demonstrated velocity- Drainage conditions dominate
. . Y fracture (seismic or aseismic) of
hardening behaviors porous rocks (Lei et al., 2011)
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Monitoring and detecting
sign of fault reactivation

* 4D velocity imaging

— Detailed 3D <- operator * Detecting sign of fault
has done good work

reactivation
* Seismicity, — Seismicity image
— Integrated, all scales — Statics of seismicity
* Deformation — Localized deformation
— Optical fiber
— InSAR

* Field experiment
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