# Towards a Neural Measure of Perceptual Distance

Classification of Electroencephalographic Responses to Synthetic Vowels

**Manson Cheuk-Man Fong**<sup>1,2</sup>, James William Minett<sup>1,2</sup>, Thierry Blu<sup>1</sup>, and William Shi-Yuan Wang<sup>1,2</sup>

<sup>1</sup>Deparment of Electronic Engineering

<sup>2</sup>Centre for Language and Human Complexity

The Chinese University of Hong Kong

September 18, 2014

Interspeech 2014

イロト イポト イモト イモト

Overview

**Q**: Can we use EEG responses to predict the **perceptual distance** between two vowels?



Manson Fong (CUHK)

Interspeech 2014

September 18, 2014 2 / 15

### Literature Review: Chang et al. (2010, Nat. Neurosci.)

#### Timing for consonant discrimination



# Literature Review: Chang et al. (2010, Nat. Neurosci.)

#### Brain-behavior correspondance

• Multidimensional scaling (MDS) is applied:



## Literature Review: Chang et al. (2010, Nat. Neurosci.)

#### Brain-behavior correspondance

• Multidimensional scaling (MDS) is applied:



• Distance within the reconstructed MDS space correlates strongly with % of different responses in a same-different judgment task.



### The present study

#### Research question

1. **[Timing]** At which time are the EEG responses most related to vowel discrimination?

(3) (3)

- ∢ ⊢⊒ →

### The present study

#### Research question

- 1. **[Timing]** At which time are the EEG responses most related to vowel discrimination?
  - Chang et al. (2010) localize the timing of consonant discrimination to be between 110–150 ms.
  - EEG: Only Wang et al. (2012) have attempted to optimize the parameters for consonant discrimination:
    - Features: DFT phase information between 2-9 Hz.
    - Best analysis window: 0-760 ms.

The timing issue was not addressed in this study, and particularly not for vowels.

- 4 @ > - 4 @ > - 4 @ >

### The present study

#### Research question

- 1. **[Timing]** At which time are the EEG responses most related to vowel discrimination?
  - Chang et al. (2010) localize the timing of consonant discrimination to be between 110–150 ms.
  - EEG: Only Wang et al. (2012) have attempted to optimize the parameters for consonant discrimination:
    - Features: DFT phase information between 2-9 Hz.
    - Best analysis window: 0-760 ms.

The timing issue was not addressed in this study, and particularly not for vowels.

2. **[Correlation]** Is the discriminability of EEG responses correlated with behavioral performance?

(日) (同) (三) (三)

## Methodology

### Subjects

- $\bullet\,$  6 healthy subjects (3 M / 3 F) are recruited in total.
- Native speakers of Hong Kong Cantonese.

3

- ∢ ≣ →

# Methodology

### Subjects

- 6 healthy subjects (3 M / 3 F) are recruited in total.
- Native speakers of Hong Kong Cantonese.

### Stimuli

• 4 synthetic mid-vowels differing only in second formant frequency (F2)



- [ɔ],  $[\infty]$ ,  $[\epsilon]$  present in native Cantonese;
- $[\Lambda]$  closest to a vowel in non-native Mandarin.

Manson Fong (CUHK)

## Methodology

#### Stimulus presentation procedure

• **Task**: Respond only to the noise stimuli by pressing the space bar on a standard computer keyboard.



- Each subject attends 4 EEG sessions. In each session:
  - Critical stimuli: The 4 vowels (each x 240).
  - Fillers: Noise stimulus (x 120).

#### EEG data acquisition

• A 32-channel Biosemi Active 2 EEG system.

Manson Fong (CUHK)

Interspeech 2014

September 18, 2014 7 / 15

### Data analysis

### Classification

- Linear discriminant analysis (LDA) is used to classify every vowel-pair.
- Classification accuracy was assessed using test samples formed from 20 successive trials of each class.
- Feature selection:



### Results: on the timing issue

#### Binary classification accuracy



### Results: on the timing issue





#### Neural discriminability indices

#### Binary classification rate (%)

#### Neural discriminability indices (d' scores)

|     | [C] | [^] | [œ] | [8] |                   |     | [C] | [^]  | [œ]  | [8]  |
|-----|-----|-----|-----|-----|-------------------|-----|-----|------|------|------|
| [C] |     | 72  | 77  | 86  | Signal detection  | [C] |     | 1.16 | 1.54 | 2.33 |
| [^] |     |     | 66  | 83  | Theory            | [^] |     |      | 0.87 | 2.04 |
| [œ] |     |     |     | 76  | $\longrightarrow$ | [œ] |     |      |      | 1.49 |
| [8] |     |     |     |     |                   | [8] |     |      |      |      |

#### Neural discriminability indices

Binary classification rate (%)

#### Neural discriminability indices (d' scores)





Manson Fong (CUHK)

### Behavioral discriminability indices

Behavioral data

|           | Natural |     |     |     |  |
|-----------|---------|-----|-----|-----|--|
| Synthetic | [C]     | [^] | [œ] | [8] |  |
| [C]       | 99      | 97  | 100 | 99  |  |
| [^]       | 99      | 91  | 61  | 98  |  |
| [œ]       | 100     | 59  | 82  | 93  |  |
| [8]       | 100     | 97  | 84  | 99  |  |

Behavioral discriminability indices (d' scores)

|     | [C] | [^]  | [œ]  | [8]  |
|-----|-----|------|------|------|
| [C] |     | 3.61 | 3.68 | 4.16 |
| [^] |     |      | 1.47 | 3.59 |
| [œ] |     |      |      | 3.06 |
| [8] |     |      |      |      |

(日) (同) (三) (三)



% judged different

3

#### Brain-behavior correspondence



Behavioral performance is significantly correlated with classification performance.

| Manson | Fong | (CUHK) |
|--------|------|--------|
|--------|------|--------|

### Discussion



#### Manson Fong (CUHK)

### Discussion

#### What can we achieve with this framework?



Manson Fong (CUHK)

Interspeech 2014

### Discussion

### Conclusion

1. The time window most critical for steady vowel discrimination was determined to be 140-220 ms.

3

• • = • • = •

Image: Image:

#### Conclusion

- 1. The time window most critical for steady vowel discrimination was determined to be 140-220 ms.
- Perceptual similarity between vowels can be inferred using EEG features, supporting the intuitive idea that vowels that are behaviorally more distinct evoke brain activities that are more distinct.

#### Conclusion

- 1. The time window most critical for steady vowel discrimination was determined to be 140-220 ms.
- Perceptual similarity between vowels can be inferred using EEG features, supporting the intuitive idea that vowels that are behaviorally more distinct evoke brain activities that are more distinct.
- 3. We are now working on extending this line of research to the full set of 7 Cantonese long vowels. When fully extended, we expect that the work presented here will shed light on the temporal dynamics in processing the different perceptual dimensions important for vowel perception.

A B A A B A

Chang, Edward F et al. (2010). "Categorical speech representation in human superior temporal gyrus". *Nature neuroscience* 13.11, pp. 1428–1432.

- Hose, B, G Langner and H Scheich (1983). "Linear phoneme boundaries for German synthetic two-formant vowels". *Hearing research* 9.1, pp. 13–25.
- Ohl, Frank W and Henning Scheich (1997). "Orderly cortical representation of vowels based on formant interaction". *Proceedings of the National Academy of Sciences* 94.17, pp. 9440–9444.
  Wang, Rui et al. (2012). "Using phase to recognize English phonemes and their distinctive features in the brain". *Proceedings of the National Academy of Sciences* 109.50, pp. 20685–20690.