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Interaction of oceanic plateaus with trenches plays a vital role in subduction activities
and tectonic evolutions. The Yap trench is a rare case of an oceanic plateau subduction
system. However, the knowledge of the impacts of plateau-trench interaction on sub-
duction activity is still insufficient, due to a lack of seismological observations. Using
ocean-bottom seismometer data near the Yap trench from April 2016 to May 2017,
we conduct seismicity analyses in the Yap subduction zone by utilizing a machine-learn-
ing algorithm and matched-filter detections. The pattern of seismicity in the Yap trench
exhibits characteristics similar to typical active subduction zones. The seismicity delin-
eates a steep subducting slab, which may have resulted from the blocking of the buoy-
ant Caroline Plateau. The majority of earthquakes are shallower than 80 km in the
event-detectable area in the Yap trench, much shallower than the potential slab depth
of 350 km from the previous seismic tomography images.

Introduction
The Yap trench–arc system is connected to the southern end of
the Mariana subduction zone, which belongs to the continuous
system of arcuate trenches in the western Pacific subduction
zone (Fig. 1). The bathymetry of the Yap trench area has char-
acteristics similar to other subduction zones in the western
Pacific, such as island arc, back-arc basin, and deep trench
(Fujiwara et al., 2000). However, the Yap trench has distinct fea-
tures, including a short trench–arc distance, limited intermedi-
ate depth seismicity, and absence of active arc volcanism
(Hawkins and Batiza, 1977; Sato et al., 1997; Fujiwara et al.,
2000; Ohara et al., 2002; Zhang and Zhang, 2020). The
trench–arc distance is only∼40 to 50 km, which is much shorter
than in typical arc-trench systems with a mean distance of 166 ±
60 km (Fujiwara et al., 2000; Stern, 2002). Seismicity along the
Yap trench is very low compared to the Izu–Bonin–Mariana
trenches, according to previous studies and unified global earth-
quake catalogs (Kobayashi, 2004; Xia et al., 2020). In addition,
there are no documented earthquakes deeper than 50 km along
the Yap trench (Kobayashi, 2004; Zhang et al., 2022).

With these distinct geophysical and geological characteris-
tics, the activity of plate subduction at present along the Yap
trench is in debate. As a rare case of oceanic plateau subduction
system (Sato et al., 1997), the Caroline Plateau is colliding with
the Yap trench. The Caroline Plateau is further separated into
the North and South Caroline Plateaus by the Sorol trough
(Fig. 1). Dating the amphibolites along the Yap trench has sug-
gested that the collision between the trench and Caroline
Plateau occurred at ∼21 Ma (Zhang and Zhang, 2020; Yao

et al., 2023). The Yap Islands are composed mainly of meta-
morphic rocks with minor volcanics, and arc volcanisms are
considered to take place before 20–25 Ma with relative tran-
sient arc volcanism during 11–7 Ma (Fujiwara et al., 2000;
Ohara et al., 2002; Kobayashi, 2004; Zhang and Zhang, 2020).
Because of the lack of active-arc volcanism and deep-focus
earthquakes, the subduction of the oceanic plate is thought
to be halted by the collision of the Yap trench with the
Caroline Plateau (Hawkins and Batiza, 1977; McCabe and
Uyeda, 1983).

Conversely, some studies suggest that subduction along the
Yap trench may still be active. For example, seismic observa-
tions revealed earthquakes distributed in the inner and outer
trench slopes near the Yap trench, which is consistent with a
typical pattern in active subduction zones (Sato et al., 1997). In
addition, heat flow values measured in the northern Yap region
show a thermal profile largely compliant with that in normal
subduction zones (Nagihara et al., 1989; Kobayashi, 2004). The
convergence rate is estimated to be small but ongoing, with a
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Figure 1. (a) Tectonic setting in and around the Yap trench
and distribution of ocean-bottom seismometer (OBS, triangles)
deployed and recovered around Yap and southern Mariana
trench. The OBS around the Yap trench are shown in red tri-
angles, which were operated from April 2016 to May 2017.
Focal mechanism plots show moment tensor solutions from the
Global Centroid Moment Tensor (Global CMT) catalog during
1978–2023, with thrust events in red, normal in Tiffany blue, and

strike-slip events in black. The open dots represent earthquakes
from the International Seismological Center (ISC) catalog colored
by focal depth. The white dashed contour shows the inferred
subducted South Caroline Plateau from Fan et al. (2022). The top
inset map shows the location of the study area with the red frame
marking the region. (b,c) Seismotectonics of the Yap trench area
shown in cross-section views. The color version of this figure is
available only in the electronic edition.
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rate of less than 6 mm/yr along the Yap trench (Seno et al.,
1993). Besides, the lack of flat-lying layered sediments in
the trench axis (Dong et al., 2018), and the presence of meta-
morphic rocks in the Yap back-arc region also suggest active
subduction (Lee, 2004; Chen et al., 2019; Zhang and Zhang,
2020; Yao et al., 2023). Therefore, these studies suggest that
the Yap trench may be in early-stage subduction (Lee, 2004)
or rejuvenated plate subduction (Zhang and Zhang, 2020).

Knowledge of the seismicity and geometry of subducting
slabs is critical to the understanding of the Yap subduction
activity and plateau-trench interaction. However, the resolution
of historical earthquake locations from the International
Seismological Center (ISC) along the Yap trench is limited
(Fig. 1). Because of the paucity of seismic constraints, the spatial
extent of the subducted slab is indistinct for the Yap trench, and
there is also no information in the Slab2.0 model and
several other global subduction zone geometry databases
(Hayes et al., 2018). Previous seismic studies located 67 events
and did not record earthquakes with depth greater than 40 km
during a 10-day ocean-bottom seismometer (OBS) observation
(Sato et al., 1997). In comparison, based on land and OBS obser-
vations, recent seismic tomographic results show that the sub-
ducting oceanic slab has overturned and extended down to a
depth of∼350 km near the north of Yap Island (Fan et al., 2022).

Although some investigations have been conducted near the
Yap trench, comprehensive geophysical observations, espe-
cially seismological observations, are still scarce in the region.
The distribution of seismicity and geometry of the subducting
slab at the Yap trench remains largely unknown. In this article,
we use the OBS data to obtain a local earthquake catalog from
April 2016 to May 2017 in the Yap region. We first detect miss-
ing earthquakes using a machine-learning algorithm
and matched-filter method, and then locate the detected
earthquake. Our results provide valuable constraints on tec-
tonic activity in the Yap trench and hold implications for
the plateau-trench interaction.

Data and Methods
OBS data set and data corrections
A passive OBS array experiment was conducted in the Yap
region from April 2016 to May 2017 (Fig. 1), using the
research vessel Kexue from the Institute of Oceanology,
Chinese Academy of Sciences (Zheng, Fan, Zhao, et al.,
2020; Fan et al., 2022). Seven OBS sets were deployed, but
only five of them with valid data were retrieved after the
one-year-long observation. Each OBS set includes a three-
component seismometer with a sampling rate of 50 Hz
and a single-component hydrophone (Zheng, Fan, Zhao,
et al., 2020). Three of the OBSs were settled on the overriding
plate, whereas the other two OBSs were deployed at the
trench outer rise (Fig. 1).

The timing and horizontal orientation of OBSs have been
corrected in previous studies (Zheng, Fan, Le, et al., 2020;

Zheng, Fan, Zhao, et al., 2020). Timing correction is conducted
based on ambient noise cross-correlation functions. The clock
drifting of each OBS ranges from 1 to 3 s after one year deploy-
ment and changes linearly. The linear time correction is con-
ducted for each OBS (Zheng, Fan, Le, et al., 2020). Estimation
of OBS orientation was conducted by fitting the amplitude of
direct P wave of teleseismic receiver functions, and using the P-
wave particle motion methods, as well as the Rayleigh-wave
polarization method. The estimated results determined with
various methods are generally consistent with each other
(Zheng, Fan, Zhao, et al., 2020). Timing-corrected OBS record-
ings can be illustrated by the well-aligned waveforms by their
hypocentral distance for different teleseismic earthquakes in
Figure 2 during the deployment.

Seismic phase detection and association
Because only four earthquakes were reported in the routine ISC
earthquake catalog at the Yap trench area during the OBS
deployment period, the template events were extremely incom-
plete for matched-filter detection. Therefore, to identify miss-
ing earthquakes, we first adopted the machine-learning
algorithm–EQTransformer for earthquake phase detection
(Mousavi et al., 2020). Following the procedures in Zhu et
al. (2023), we conducted a 1 Hz high-pass filter of the wave-
forms, which gives the best performance (i.e., with the highest
recall and precision rate) on OBS data (Chen et al., 2022). A
threshold of 0.1 for P and S phases was typically adopted when
using the EQTransformer. Considering lower signal-to-noise
ratios (SNRs) of OBS data, we retained the predicted picks with
a probability larger than 0.08 for the P and S phases, which
can balance the aims of getting more phases and avoiding
false detections. In total, 16,043 P and 18,019 S phases were
predicted by EQTransformer.

The Rapid Earthquake Association and Location (REAL)
algorithm was then used to associate the phase picks with indi-
vidual events (Zhang et al., 2019). Forty-two events with at
least five phases (containing at least one P and one S phase)
were associated and preliminarily located by the REAL
algorithm (Fig. 3). Considering a large number of detected
phases were not associated with events, the Gaussian
Mixture Model Associator (GaMMA; Zhu et al., 2022) was fur-
ther used to associate the phase picks with individual events.
The Gaussian mixture model improves phase association by
considering multiple phase parameters, such as phase arrival
time, phase amplitude, and phase picking quality score (Zhu
et al., 2022). The events with at least five phases (containing
at least one P and one S phase) were preliminarily located,
and events with less than five picks were discarded. In this
process, 32 more events were associated with GaMMA
(Fig. 3). A total of 74 events were identified and preliminarily
located. The number of seismic phases required for associating
events significantly influences the quantity of events. The num-
ber of associated events significantly increased, if required at
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least four seismic phases (Fig. 3b). However, the events with
only four seismic phases cannot be relocated in the following
process; therefore, we adopted the GaMMA results with at least
five phases.

Using the 74 earthquakes as template waveforms, we
adopted matched-filter detection to further improve the
detection, similar to previous studies (Peng and Zhao, 2009;
Yang et al., 2009; Zhu et al., 2019). To improve the SNR of
waveforms generated by local earthquakes, we applied a
2–8 Hz band-pass filter to both template waveforms and con-
tinuous OBS recordings. A 10 s time window (5 s before and 5 s
after the S arrival) of previously identified earthquakes was
selected as template waveforms. The threshold value of
cross-correlation coefficient was 0.5 on a single station because
this gives relatively stable detectability and can detect events
with different spatial locations from template events. We com-
bined detected events and removed duplicate detections with
origin time within ±8 s. A total of 2138 earthquakes were
detected after visual inspection.

Relocation of detected earthquakes
We then obtained absolute locations for earthquakes with
clear first P and S arrivals on at least three stations using
Hypoinverse (Klein, 2002) based on the IASP91 1D velocity
model (Kennett and Engdahl, 1991). We have visually checked

all the picked arrivals before relocation and assigned weight for
picked arrivals. In addition, we also assigned distance weight
and residual weight during location. The distance weighting
function was 1.0 for stations closer than 200 km, followed a
cosine taper, and then decreased to 0.0 for stations farther than
400 km. The residual weighting function was 1.0 for residuals
<0.5 s, 0 for residuals >2 s, and also followed a cosine taper in
between. We adopted the criterion that the horizontal and
vertical errors were less than 20 and 50 km, respectively. A total
of 712 out of the 2138 detected events were located using
Hypoinverse. We compared the location difference between
the ISC events and corresponding relocated events (Fig. S1,
available in the supplemental material to this article). The
time residuals were obviously reduced after relocation
(Fig. S2), which demonstrates improved earthquake locations.
Waveforms of an example event were also well aligned with
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Figure 2. (a) The distribution of four example earthquakes for
which waveforms are shown in panels (b–e). The yellow triangle
represents the OBSs in the Yap trench. (b–e) Seismic waveforms
of the four earthquakes in panel (a) recorded by vertical com-
ponents of OBSs. The red bars mark the predicted P-wave
arrivals. The station name is shown in the left of each waveform
trace. The color version of this figure is available only in the
electronic edition.
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hypocentral distance after relocation (Fig. S3). The average
horizontal and vertical Hypoinverse location uncertainties
are 4.0 and 12.9 km, respectively (Fig. S4).

We further improved the locations using the double-
difference relocation–HypoDD algorithm (Waldhauser and
Ellsworth, 2000), which can effectively reduce location errors
due to structural variations and an imperfect velocity model. A
total of 4143 P- and 2768 S-phase differential times were built
from phase picks. We also measured differential travel times
by cross correlating P and S waveforms of −1.5 to 2.5 s and
−3 to 3 s, respectively, and got 70,584 P- and 34,691 S-wave
differential time measurements. Both picked and cross-corre-
lation-derived differential times were then used for the reloca-
tion, with a minimum number of eight for the differential
time measurements per event pair and a maximum separation
of 20 km. However, due to the small number of OBSs and

large interstation distance, only 99 events near Y39 OBS were
relocated using hypoDD eventually (Fig. S5). The average rel-
ative location uncertainties using hypoDD are 0.39, 0.44, and
0.56 km in the east–west, north–south, and vertical directions,
respectively.

Because many detected events were only recorded by one
or two nearest OBSs (Fig. S6), which cannot be located with
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limited reliable phases, we combined 99 relocated events using
hypoDD with the other events in their Hypoinverse locations.
Therefore, 712 out of the 2138 detected events were located
eventually during the one-year-long deployment in the Yap
trench. There were a few to a dozen earthquakes every day
(Fig. 4a). During the one-year-long observation, the largest
Mw 6.1 earthquake occurred in December 2016, immediately
following which a large number of aftershocks were
observed (Fig. 4).

Resulting Seismicity Pattern
We can see some features of the spatial distribution of seismic-
ity: a large number of earthquakes occurred in the inner trench
slope, and some earthquakes occurred in the outer rise (Fig. 5).
Beneath the Yap inner trench slope, the largest Mw 6.1 earth-
quake exhibits reverse slip according to the Global Centroid
Moment Tensor (Global CMT) solution, with a centroid depth
of 16 km (Fig. 5). Based on the distribution of Global CMT
solutions, most of the earthquakes in the inner trench slope
show thrust-faulting mechanisms (Fig. 1). Besides, in the
trench outer-rise region, some earthquakes occurred within
30 km from the trench axis, with most focal depth shallower
than 25 km.

We found many earthquakes with depths larger than 50 km,
which can depict the potential location of the subducting plate.
Based on the located seismicity, a steep subducting slab reaches
∼80 km in depth, with nearly vertical dip angles (Fig. 6a–c).
The slab-related earthquakes were horizontally concentrated
within 60 km of the trench axis. The characteristics of

seismicity along the Yap trench are quite different from the
southern Mariana. Based on the earthquakes constrained by
OBSs in southern Mariana during six months (Zhu et al.,
2019; Chen et al., 2022), the slab-related earthquakes were
horizontally distributed within ∼150 km from the trench axis,
and the deep subducted slab reaches ∼240 km east of the
Challenger Deep (Fig. 6f).

Discussion
Implications for oceanic plateau and trench
interactions
The spatial distribution pattern of seismicity and slab geometry
along the Yap trench was revealed, which can enhance
our understanding of local tectonic activity and plateau sub-
duction. About two hundredfold more earthquakes were
detected than the global catalog in the Yap trench. A large
number of earthquakes occurred beneath the inner trench
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slope, and some of them show thrust-faulting mechanisms
according to Global CMT solutions. Therefore, these earth-
quakes are most likely caused by thrusting relative motion
between the overriding and subducting plate. Earthquakes
occurred in the outer rise of the Yap trench, which is likely
related to the bending faults (Zhang et al., 2023). The occur-
rence of bending-related earthquakes and thrust-faulting
earthquakes coincides with seismicity distribution in active
subduction zones (Zhu et al., 2019; Eimer et al., 2020;
Zhu et al., 2023). These observations together with previous
geochemical (Lee, 2004; Chen et al., 2019; Zhang and
Zhang, 2020; Yao et al., 2023) and geophysical evidence
(Nagihara et al., 1989; Sato et al., 1997; Kobayashi, 2004;
Dong et al., 2018) indicate ongoing plate subduction despite
the Caroline Plateau collision.

The active subduction of the Caroline Plateau holds impli-
cations for the fate of an oceanic plateau, subducting into the
mantle or accreting to the continental crust (Cloos, 1993; Yan
et al., 2022). The estimated crustal thickness for the South
Caroline Plateau (near OBS Y20) is ∼17.6 km using receiver
functions, whereas the crustal thickness is ∼8.5 km near
OBS Y24 at the horst or garben structure zone (Fan et al.,
2022). Some previous studies expect that the arrival of an oce-
anic plateau (buoyant structure) into a subduction zone may
block or even fail subduction (Arrial and Billen, 2013). In com-
parison, buoyancy analysis indicates that an oceanic plateau
with a buoyant crustal thickness <15 km may subduct,
but an oceanic plateau with a crustal thickness >30 km may

not (Cloos, 1993). However,
seismic and drill-core observa-
tions show that even the thick-
est Ontong Java plateau with a
30–40 km crust can subduct to
depths of at least 200 km
(Phinney et al., 2004; Taylor
and Benyshek, 2024). Although
quantitative factors determin-
ing whether plateaus are
accreted or subducted remain
unclear, the potential of sub-
ducting an oceanic plateau
may depend on the local iso-
static balance of buoyancy
forces, which is related to plate
age and density, eclogitization
of crustal basalt, and slab
length (Cloos, 1993; Liu et al.,
2010, 2021; Arrial and
Billen, 2013).

Subduction of buoyant
Caroline Plateau has markedly
affected the mode of subducted
slab and interplate and intra-

plate earthquakes (Reyners et al., 2011; Daly et al., 2021; Yan
et al., 2021; Zhang et al., 2021). Based on our observations of
seismicity along the Yap trench, we suggested that the steep sub-
ducted slab is likely related to blocking of the buoyant Caroline
Plateau near the Yap trench. The possible reason is that the
buoyant oceanic plateau obstructs slab subduction near the
trench, and the front of the subducted slab bends and sinks
due to the relative larger density of the subducted slab compared
with the asthenosphere (Yan et al., 2022). Therefore, the sub-
ducted slab gradually steepens (Fig. 7). In addition, the high-
angle subducted slab coincides well with the observations of
steep arc-ward trench slope and intense bending-related faults
in seismic profiles (Lee, 2004; Dong et al., 2018), and the vertical
slab images at depth < 100 km (Fan et al., 2022).

The influences of subducting oceanic plateaus on slabs have
also been reported by numerical models and observations.
According to the numerical modeling, the behavior of a sub-
ducted slab may become steep or flat when an oceanic plateau
interacts with a trench, mainly depending on the composi-
tional density, mantle strength, and the size of an oceanic
plateau (Arrial and Billen, 2013; Yan et al., 2022). Seismic
observations also indicate steepening of the subducted plate
down-dip of the buoyant plateau (Reyners et al., 2011; Taylor
and Benyshek, 2024). The younger subducted Australian
plate bends vertically, due to the collision of the Hikurangi
Plateau with the northern Fiordland subduction zone near
New Zealand (Reyners et al., 2011). Besides, the subducted
slabs constrained by seismicity are near vertical due to the
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subduction of the Ontong Java Plateau under the Solomon
Islands (Taylor and Benyshek, 2024).

In addition to the potential influences of an oceanic plateau
on slab morphology, other possible mechanisms of steep sub-
duction have been proposed by previous studies, such as the
age and width of a subducted slab (Li et al., 2011; Schellart,
2020). A compilation from the geological data of subduction
zones in nature and results from the geodynamic subduction
models both provide support for the hypothesis that subduc-
tion zone width and age play an important role in slab
morphology, indicating that old (> ∼80 to 100 Ma) and wide
(≥ ∼6000 km) subduction zones facilitate flat slab subduction,
whereas narrow slabs retain steep dip angles (Schellart, 2020).
The young Caroline plate (∼35 to 30 Ma) and the narrow slab
width (about 700 km; Fujiwara et al., 2000) are favorable for
steep slab subduction. Besides, other factors (e.g., overriding
plate age and strength) related to wedge suction forces are also
considered to influence slab subduction (Li et al., 2011).

Interpretations for limited earthquakes deeper
than 80 km
The recorded seismicity in the Yap region shows most of the
earthquakes shallower than 80 km. The deepest focal depths
of earthquakes are shallower in the event-detectable area in
the Yap trench, compared to southern Mariana with the deepest
earthquake of ∼240 km (Fig. 6). It is noted that limited
observation period or detection power may be possible reasons
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Figure 6. (a–f) Cross-section views with a bin width of 50 km
of seismicity along the six profiles shown in Figure 5. Trench
locations are marked as 0 km. Gray focal mechanism plots near
the Yap trench show moment tensor solutions from the Global
CMT. The light orange indicates a potential slab based on the
located seismicity, but the dashed lines do not represent the
boundary of the slab. MT, Mariana trench; YT, Yap trench. The
color version of this figure is available only in the electronic
edition.
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for the absence of seismicity deeper than 80 km along the Yap
trench, considering that the detectable deep earthquakes may be
infrequent in a very slow convergent margin. However, the rel-
ative shallow earthquakes can also be revealed by global catalogs
and a previous study (Sato et al., 1997). Earthquake observations
near the Yap trench using OBS for 10 days revealed some small
earthquakes with hypocenters shallower than 40 km (Sato et al.,
1997). There is no earthquake deeper than 50 km, based on the
hypocentral distribution from the Global CMT and ISC catalogs
(Fig. 1). However, based on seismic tomography images, the slab
is shallower than 100 km near the south Caroline Plateau, but is
considered to reach a depth of 350 km near the north Caroline
Plateau (Fan et al., 2022). The observed seismicity is much shal-
lower than the subducted slab imaged by seismic tomography
near the north Caroline Plateau.

With our present understanding, lacking earthquakes deeper
than 80 km is straightforward if there is no slab at depths larger
than 80 km. Alternatively, if the subducted slab has reached
deeper depths (e.g., 300 km) than observed earthquakes, other
factors may lead to lacking earthquakes with depths > 80 km.
Earthquakes deeper than 80 km occur at depths for which con-
ventional frictional instability should not be possible; therefore,
different mechanisms from shallow earthquakes may be

responsible for the occurrence of intermediate-depth earth-
quakes (Zhan, 2020), such as dehydration embrittlement of
metamorphosed oceanic crust and mantle (Peacock, 2001;
Yamasaki and Seno, 2003; Frohlich, 2006) and thermal runaway
(Wiens, 2001; Kelemen and Hirth, 2007). Besides, hetero-
geneous strain rate in slabs is proposed to be an influential factor
in the depth distribution of seismicity, which can explain the
large gaps in deep seismicity beneath ∼300 to 550 km but do
have earthquakes at depth from 500 to 660 km in Chile and
Peru subduction zones (Billen, 2020). Therefore, we speculated
that the hydration and dehydration state or thermal conditions
may not favor failures of earthquakes deeper than 80 km at the
Yap trench. Different from the convergence rate of 30–60 mm/yr
in the Mariana trench (Stern et al., 2004), the convergence rate
along the Yap trench is very low (<6 mm/yr) due to the collision
of Caroline Plateau (Seno et al., 1993). The slow convergence rate
allows sufficient slab assimilation, during which the characters of
slab (such as temperature and mineral compositions) gradually
approach to surrounding materials (Nagihara et al., 1989). The
slab may, therefore, become ductile due to increased temperature
(Fig. 7). Moreover, the heated subducting slab may have com-
pleted dehydration of the main hydrous minerals such as anti-
gorite at a shallow depth (Hacker et al., 2003). These conditions
are unfavorable for generating earthquakes at a deeper depth in
the Yap trench.

Summary
Using a one-year-long OBS experiment near the Yap trench,
we performed a machine-learning algorithm and matched-fil-
ter detections and constructed a comprehensive catalog of local
earthquakes. Although only four earthquakes were reported in
the ISC catalog during the deployment period, we found 2138
local earthquakes and located 712 out of them. A large number
of earthquakes occurred in the inner trench slope, whereas
some earthquakes occurred in the outer rise. These character-
istics of seismicity in the Yap trench are generally similar to
typical active subduction zones. Particularly, the seismicity
delineates a nearly vertical subducted slab in the Yap trench,
which is likely related to the blocking of the buoyant Caroline
Plateau. Most focal depths are less than 80 km in the event-
detectable area in the Yap trench, much shallower than the
potential slab from seismic images in the same area. The rea-
sons may stem from a limited observation period or detection
power, lack of slab, or unfavorable thermal and petrological
conditions for generating deep earthquakes.

Data and Resources
The earthquake catalog generated in this study is available online
(https://figshare.com/articles/dataset/YapEarthquake/24920532). The
seismograms of earthquakes can be accessed by connecting with the cor-
responding author. The historical earthquake catalog was collected from
the International Seismological Center (ISC) Bulletin: event catalog
search (http://www.isc.ac.uk/iscbulletin/search/catalogue/). The focal

Figure 7. Schematic diagram of the steepening Yap subducted
slab, modified after Zhang and Zhang (2020). (a) For normal
subduction without plateau blocking, subducted slab dehydration
promoted the generation of arc volcanism and initial arc. Blue stars
represent earthquakes. (b) Because of the Caroline Plateau
blocking slab subduction near the trench, the subducted slab
steepens gradually as the front of subducted slab bends and sinks.
With ultraslow subduction and a steep slab, the Yap arc-trench
system is characterized by limited volcanism currently. The slow
subducted slab may be assimilated into surrounding materials and
become ductile, as shown in amaranth color. The color version of
this figure is available only in the electronic edition.
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mechanisms were fromGlobal CentroidMoment Tensor (Global CMT)
Project database (www.globalcmt.org/CMTsearch.html). All websites
were last accessed in July 2024. The supplemental material for this article
includes supporting figures of location uncertainties and comparison,
and these figures are only available online.
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