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ABSTRACT
To remove background noise from seismic data recorded by spatially dense arrays, we have
developed a space-based denoising procedure using the discrete curvelet transform. Based
on a detailed statistical characterization of noise coefficients through the empirical cumu-
lative distribution function method within a pre-event time window, signal and noise can
be separated effectively by nonlinear thresholding. After synthetic test, we applied this
method on data from an industry 3D seismic experiment recorded at an array deployed
near Utica, Ohio. The denoising results show good waveform consistency with a signifi-
cantly enhanced signal-to-noise ratio. Our curvelet approach allows a more computation-
ally efficient spatial–temporal localization analysis of seismic data than conventional
curvelet techniques by avoiding the assumption of stationary Gaussian-distributed noise
and can be implemented as a complement of time-domain wavelet methods with fewer
frequency losses after denoising. This new method provides a fast and convenient way to
recover signals from noisy recordings with dense 2D arrays, leading to a considerable
improvement in data quality compared with conventional Fourier, wavelet, and curvelet
methods. The partitioned seismic signals and noise would yield advanced earth structure
imaging, small-event detection, ambient noise tomography, and others.

KEY POINTS
• We characterize the localization feature of noise and sig-

nal and develop a denoising method using curvelets.

• We present significant advances in noise reduction by cur-
velets in the spatial domain using dense arrays.

• Curvelets work well in seismic denoising and designaling

and complement time-domain wavelet methods.

Supplemental Material

INTRODUCTION
Seismic arrays are attaining denser spatial sampling as new
array configurations are proposed and seismometers are
improved (Mykkeltveit et al., 1983). High spatial density array
datasets with tens to hundreds of meters of interstation dis-
tance offer unprecedented opportunities for advancing Earth
structure imaging and source physics studies. For example,
Huang (2001) monitored the rupture propagation of the
Mw 7.7 Chi-Chi, Taiwan, earthquake by analyzing stacked seis-
mic waveforms from a dense array with a coverage of 30 ×
10 km. Ben-Zion et al. (2015) imaged subsurface structure
within the San Jacinto fault zone in southern California from
a spatially dense nodal array composed of 1100 sensors in an
∼600 m × 600 m configuration, which improved our under-
standing of fault zone structure compared with previous small-
aperture arrays (e.g., Yang and Zhu, 2010; Yang et al., 2014).

Inbal et al. (2016) placed the seismicity identified by two dense
arrays in Long Beach, southern California, including the 5200-
seismometer 7 km × 10 km Long Beach array and the 2600-
sensor 5 km × 5 km Rosecrans array to a localized zone
embedded in the upper mantle. Yang, Duan, et al. (2020)
derived high-resolution fault zone structure beneath the
Chenghai fault, Yunnan, southwest China, using an 8-km-long
array with an average interstation distance of 50 m based on
which a number of new methods had been developed to image
crustal fault zones (Jiang et al., 2021; She et al., 2022; Song and
Yang, 2022). However, datasets acquired from dense array
deployments are subject to contamination by unwanted noise,
usually incoherent and random caused by ocean surf, wind,
local traffic, or imbalance of geophone responses, among other
natural and cultural sources (Yilmaz, 2001; Stutzmann et al.,
2012; Behm et al., 2014). Distinguishing a desired signal from
the noisy dataset remains a key problem in array seismology.
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Many techniques have been developed to reduce noise
power in dense array recordings. Band-pass filtering has been
routinely utilized to suppress noise by a roughly estimated fre-
quency cutoff. Apparently, it is deficient in separating the sig-
nal and noise within the same frequency band (Douglas, 1997).
Recently, a number of Fourier-based and wavelet-based trans-
forms have been employed for data denoising by taking advan-
tage of the sparse representation of seismic data through linear
transformations. The power of these denoising techniques is
realized by reducing the information of time series data
through a transform followed by amplitude thresholds in
the transformed domain based on the different distribution
of noise and signal (Tang and Ma, 2010; Langston and
Mousavi, 2019). For example, the τ − p method suppresses
noise in the time-slowness domain by filtering and allows
for efficient manifestation of the reflected phases (Turner,
1990; Basak et al., 2012). The wavelet transform utilizes various
wavelet functions to represent the seismic data in a compact
form and separate noise and signal through their different dis-
tribution on the wavelet scale-time plane (Gaci, 2013; Mousavi
and Langston, 2016). Besides, the wavelet packet transform,
which comprises a flexible subband architecture, allows a
detailed decomposition of the signal in the time–frequency
plane and has yielded success in detecting and differentiating
seismic signals with the high-frequency transient components
(Galiana-Merino et al., 2003). Recently, the S transform, as an
extension of the continuous wavelet transform windowed by a
Gaussian function (Stockwell et al., 1996), has been used for
optimally denoising seismograms and extracting ground-
motion signals to investigate the seismic response of soils
and buildings (Parolai, 2009; Ditommaso et al., 2012).

The curvelet, or the “directional wavelet,” completes a mul-
tiscale, multidirectional representation of large data volumes
with enhancing sparsity and outperforms Fourier series and
wavelets with its property of capturing data “curvature” in
space because of its curve-like construction (Candes and
Demanet, 2003). Compared with wavelets, a curvelet has faster
decay of coefficients near discontinuities (Candes and
Demanet, 2005). Therefore, the curvelet transform has been
widely employed in seismic data analysis, such as data denois-
ing (Herrmann et al., 2008), wavefield reconstruction
(Herrmann and Hennenfent, 2008), and wave propagation
simulation (Sun et al., 2009). Most of the present curvelet
denoising procedures focus on differing “continuity” of shot
records and treat the noise as stationary and Gaussian distrib-
uted (Herrmann et al., 2008; Tang and Ma, 2010). Under such
an assumption, a Gaussian criterion is then employed to
remove the noise power by thresholding, retrieving the desired
seismic signals (Herrmann et al., 2007). However, the spatio-
temporal localization of a Gaussian noise in the curvelet
domain has not yet been thoroughly studied, and the seismic
signals could be recovered with erroneous amplitudes using
Gaussian criteria (Langston and Mousavi, 2019).

In this study, we perform a detailed analysis of curvelet coef-
ficient distribution of noise over lag time and use a straightfor-
ward idea that noise and signal from a dense array can be
separated in space by thresholding. We assume that the back-
ground noise field is stationary but varies across sensor loca-
tion. The curvelet transform is manipulated by taking
individual snapshots at discrete time points and results in a
2D space–frequency mapping to improve resolution by dense
spatial sampling. In the following, we first investigate the char-
acteristic statistics of synthetic Gaussian noise and real noise
data via the curvelet transform to examine the plausibility
of Gaussian criterion for denoising. Based on the statistics
of noise coefficients, the noise level is better estimated by fitting
the data with empirical cumulative distribution functions
(ECDFs) and then employed to denoise the raw data through
nonlinear thresholding. In addition to synthetics, the new cur-
velet technique is applied to a dataset of two seismic events
recorded by an industry array deployed near Utica, Ohio.
The results illustrate that background noise can be significantly
suppressed, and signals can be retrieved with high fidelity. Our
denoising method offers an intuitive and unique way to
separate noise and signal using dense 2D arrays.

METHODOLOGY
The 2D seismic wavefield record D, including the signal S con-
taminated by background noise N, can be generally modeled as
follows:

D�~x,t� � S�~x,t� � N�~x,t�, �1�

in which ~x denotes the position vector in 2D space and t rep-
resents time. We apply the curvelet transform in space so the
wavefield for each snapshot will be mapped into orthogonal
localized prototype waveforms at different scales, directions,
and locations (Candes et al., 2006; Fig. 1). Because the curvelet
transform is linear and Fourier based, the seismic wavefield at a
certain time point t � t0 obeys the following relationship after
transformation:

CDt0

j,l,k � CSt0
j,l,k � CNt0

j,l,k , �2�

in which C
it0th
j,l,k � hith�~x,t0�,φj,l,ki represents the curvelet coeffi-

cient of the ith component of the wavefield at a specific scale
j, orientation l, and translation k � �k1,k2� ∈ Z2. The coefficient
is calculated through a scalar product of the arbitrary spatial
function ith�~x� recorded at time t0 and the curvelet φj,l,k.

Taking all the curvelet coefficients of seismic record D, signal
S, and noise N in their chronological order for each curvelet
parameter group (j, l, k) gives the time sequencing data

fCDtn

j,l,kg, fCStn
j,l,kg, and fCNtn

j,l,k g, respectively, in which tn denotes

the time sample for index n.
Although the denoising procedure is performed for a 3D

curvelet matrix by analyzing each (j, l, k) group per snapshot,
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a concatenation operation is conducted here to help under-
stand how the curvelet coefficients are distributed over time
for different (j, l, k) group. For a certain seismic station (or
a fixed position in space), we flatten the 3D curvelet matrix
into a 2D array by picking up all the curvelet coefficients at
each scale and direction group (j, l) and rearranging them
by different time points to eventually obtain an in situ “scalo-
gram” (Fig. 2). It is not necessary to scan over the translation
parameter k because for a fixed (j, l) group, the wavefield infor-
mation is mostly enclosed by the curvelet closest to the station.

Eliminating the fCNtn

j,l,k g groups is the key to retrieving the
desired signal S�~x,t� from the observation D�~x,t�. Here, we
adopt a widely used approach, thresholding, to suppress the
noise level. Previous studies have demonstrated the effective-
ness of thresholding (Candes et al., 2006; Ma and Plonka, 2010;
Naghizadeh and Sacchi, 2010). The central idea is to extract the
signal-affiliated coefficients by removing an estimate of the
noise coefficient from the entire sequence data fCDtn

j,l,kg. A
threshold function T�·� is determined in the curvelet domain
at each (j, l, k) group by measuring the absolute value of the
noise coefficients within a pre-event window. Then the signal
coefficients fCStn

j,l,kg can be recovered by various thresholding
techniques (Weaver et al., 1991; Li and Liang., 2012).
Among these, nonlinear thresholding, including hard and soft
thresholding, has been suggested to handle large seismic data-
sets in an explicit and effective way (Donoho and Johnstone,
1995). Normally, hard thresholding is performed by keeping all
elements in the sequence fCDtn

j,l,kg if they are greater than a given
threshold βj,l,k or otherwise setting to zero, which can be
expressed by the following equation:

C̃Dtn

j,l,k � T�CDtn

j,l,k�hard �
�
CDtn

j,l,k if jCDtn

j,l,kj ≥ βj,l,k
0 Otherwise

: �3�

Note that the threshold βj,l,k is determined individually for
each curvelet parameter group (j, l, k). Alternatively, soft
thresholding is done by shrinking all coefficients with magni-
tudes larger than the threshold by the inferred noise level βj,l,k
and erasing all others:

C̃Dtn

j,l,k � T�CDtn

j,l,k�soft

�
�
sign�CDtn

j,l,k��jCDtn

j,l,kj − βj,l,k� if jCDtn

j,l,kj ≥ βj,l,k
0 Otherwise

, �4�

in which

sign�CDtn

j,l,k� �
CDtn

j,l,k

jCDtn

j,l,kj
: �5�

Compared with hard thresholding, soft thresholding yields
smoother signal estimates with fewer artifacts, which were
introduced by the shrinkage operation (Chang et al., 2000).
However, a different choice of the threshold βj,l,k will directly
affect denoising resolution. A detailed analysis of the statistical
properties of noise coefficients is necessary for improving sig-
nal-to-noise ratio (SNR). In general, the noise field N�~x,t�
recorded on a seismic array is described as a superposition
of uncorrelated waves propagating from all azimuths and dis-
tances (Harmon et al., 2010) and originating from randomly
distributed sources in space. As such, there is no specific
propagation direction or dominant wavelength for the noise
curvelet coefficients within a pre-event time window. The
background noise may vary at different stations, usually

x

y

x

y
(a) (b)

Figure 1. Curvelets at three different scales, directions, and locations are
displayed both in the (a) spatial and (b) frequency domains. Note that
the curvelet is localized within an angular wedged window and has a
parabolic scaling of length ≈ width2 in the frequency domain.

Volume XX Number XX – 2024 www.bssaonline.org Bulletin of the Seismological Society of America • 3

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120240030/6526989/bssa-2024030.1.pdf
by Chinese University Hong Kong user
on 06 August 2024



interpreted as a stationary and Gaussian time series (White,
1988; Bendat and Piersol, 2011; Zhong et al., 2015).
Therefore, the noise threshold by assuming Gaussian statistics
is determined by the following equation:

βj,l,k � mean�jCDtn

j,l,kj� � c0 × std�jCDtn

j,l,kj�, �6�

in which mean�·� represents the mean value and std�·� denotes
the standard deviation of the magnitude of curvelet coefficients

fjCDtn

j,l,kjg for a specific (j, l, k) group. A positive constant c0 is

used to quantify the threshold. For example, the signal can be
obtained with a 99.7% confidence level by taking a choice of
c0 � 3 in an ideal Gaussian case (Starck et al., 2010). A more
flexible and data-dependent criterion called the “universal”
threshold is suggested for the practical data (Donoho and
Johnstone, 1994), which is given as follows:

c0 �
������������������
2 log10 N

p
, �7�

in which N is the total number of data samples. Normally, c0
obtained from the universal threshold relationship exceeds a
value of 3 when N is >∼31,620.

Nevertheless, the threshold βj,l,k is decided by taking the
absolute value of the noise coefficients as in equation (6).
This operation can alter the statistical distribution pattern
of a Gaussian noise (Langston and Mousavi, 2019). To clarify

whether the magnitude of noise coefficients can be addressed
by a Gaussian solution, we compute their kurtosis (the fourth
standardized moment), which was introduced in statistics to
determine if the input data are Gaussian (Bickel and
Doksum, 2015). Regarding the kurtosis of a normal distribu-
tion with a value of 3, the excess kurtosis (kurt) for an N-sam-
ple data series: zn � fz1,z2,…,zNg with a mean μz and standard
deviation σz is defined as follows:

kurt �
P

N
n�1�zn − μz�4

N
− 3: �8�

Then a kurtosis estimator Ekurt can be applied to calculate the
value of “non-Gaussianity” based on the kurt measurement:

Ekurt �
kurt

�����������
1 − a

p
������������
24=N

p , �9�
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Figure 2. The scheme for developing an in situ scalogram from a 3D curvelet
matrix. (a) displays one wavefield snapshot for a synthetic spherical wave.
The station chosen for obtaining the scalogram is denoted by a red star.
(b) The corresponding curvelet coefficient at each scale j and direction l. The
curvelet coefficients assigned to the station is represented by a red square at
each (j, l) group. (c) The constructed scalogram by collecting all the curvelet
coefficients in time. The color version of this figure is available only in the
electronic edition.
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in which a stands for the level of confidence, usually taking the
value of 90% (Ravier and Amblard, 2001). Normally, the input
dataset can be classified as Gaussian if the magnitude of Ekurt

is <1 (i.e., jEkurtj ≤ 1) and non-Gaussian otherwise
(for jEkurtj > 1).

We construct a 256 × 256 pixels synthetic noise field to test the
applicability of Gaussian noise assumption (Fig. 3a). The white
Gaussian noise at each station, which has a 50 samples per second
sampling rate and 5 s duration, is modeled using the built-in
add white Gaussian noise function within MATLAB (www
.mathworks.com/products/matlab, last accessed November
2023) (Fig. 3b) and is added to each sampling point of the syn-
thetic spherical wave (Fig. 2a) with an SNR of −15 dB. The devel-
oped scalogram at a specified station within the noise window
displays a random distribution of noise coefficients over lag time

in different curvelet parameter group (j, l, k) (Fig. 3c). We com-
pute the non-Gaussianity of the magnitude of noise coefficients
in all (j, l, k) groups for the synthetic Gaussian noise through the
kurtosis test. The result demonstrates that a majority of the non-
Gaussianity values are positive and >1, indicating non-Gaussian
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Figure 3. (a) Snapshot in time t = 1.0 s for a 256 × 256 pixels synthetic
Gaussian noise field. (b) The synthetic time series of noise at a certain
station (denoted by a black circle in panel a) by assuming a white Gaussian
distribution. (c) The constructed scalogram at the station showing the
distribution of noise coefficient magnitudes in each curvelet parameter
group (j, l, k) over time lag. (d) The computed non-Gaussianity of the noise
coefficient magnitudes for each (j, l, k) group in panel (c). The non-
Gaussianity having values of −1 and 1 are represented by black solid lines.
The color version of this figure is available only in the electronic edition.
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distributed noise coefficient magnitudes. In addition, a positive
kurtosis represents a heavy tail in the distribution (DeCarlo,
1997), implying that the Gaussian noise shows a poor concentra-
tion in the curvelet domain and may have a large number of out-
liers if using the universal threshold in equation (7). Therefore,
a more robust criterion than the Gaussian solution should
be sought for a better determination of the noise threshold.

Recently, Langston and Mousavi (2019) have proposed the
ECDF method to analyze the noise power. The ECDF is calcu-
lated by sorting the N-sample noise coefficient magnitudes in
ascending order and the corresponding cumulative distribu-
tion function (CDF) counts from 0 to 1 with an increment
of 1/N. Based on the empirical estimation of the noise coeffi-
cient sequences at each (j, l, k) group, the threshold function
βj,l,k is decided by taking the value of where the ECDF is at a
user-defined tolerance level. Using this method, we do not
need to assume a particular noise distribution, such as a
Gaussian noise, but let the data choose the correct path.
Herein, we estimate the ECDF of noise coefficient at each
(j, l, k) group and then determine the threshold by calculating
the 99% confidence value for the distribution. In other words,
the threshold βj,l,k can be properly obtained when the inverse
ECDF has a probability of 0.99 (Langston and Mousavi, 2019),

βj,l,k � ECDF−1�Pj,l,k � 0:99�, �10�

in which ECDF−1 is the inverse CDF, or quantile function, of
curvelet coefficients and Pj,l,k denotes the probability.

We further apply the ECDF method on a dataset from a
dense nodal array deployed in Ohio during August 2013.
Figure 4a displays a 60 s raw seismogram from a local event
at one station and the corresponding scalogram showing the
curvelet coefficient magnitudes. The values in curvelet param-
eter groups (j, l, k) having a same scale j but different l and k are
normalized by the maximum in this scale j. Obviously, curvelet
coefficients of signals have larger magnitudes than those in the
noise window. Even within a same scale j, the signal-related
coefficients in some (l, k) groups are greater than others
because the orientations in these groups overlap much with
the wave propagation direction. The noise coefficient magni-
tudes within the first 30-s pre-event window show distinct
non-Gaussian statistics through the kurtosis test (Fig. 4b). A
comparison of thresholds determined by the ECDF method
with universal thresholds assuming Gaussian statistics is dis-
played in Figure 4c. The magnitude of noise coefficients in
coarser (lower) scales overwhelm those in finer scales because
a curvelet at coarser scale occupies a larger wavelength in
space. However, there are major differences between the
thresholds given from these two approaches. The Gaussian cri-
terion will result in a considerable underestimation of thresh-
old because most of the noise coefficient magnitudes have large
positive values of non-Gaussianity. Conversely, the thresholds
obtained from an inverse ECDF are generally greater than

those from the Gaussian criterion, which are more evident
at coarser scales (Fig. 4c), suggesting that the ECDF technique
outperforms the universal threshold and yields a better estima-
tion of thresholds. Figure 4d shows the computed ECDF curve
from the first 30 s noise window and the resulting threshold at
one curvelet parameter group having a non-Gaussianity of
12.57. The threshold in coefficient magnitude is chosen corre-
sponding to where the inverse ECDF has a probability of 0.99.

After the threshold βj,l,k has been estimated individually at
each (j, l, k) group via the ECDF method, a hard and/or soft
thresholding procedure can be performed to denoise the raw
data using equations (4) and (5). The remaining curvelet coef-
ficients, C̃Dtn

j,l,k , after the thresholding are attributed to the seis-
mic signal S̃, which can be retrieved by applying an inverse
curvelet transform for a summarization of the dot product
of thresholded coefficients and the curvelet ϕj,i,k:

S̃�~x,tn� �
X
j,l,k

C̃Dtn

j,l,k × φj,i,k: �11�

On the other hand, by extracting the signal coefficients C̃Dtn

j,l,k but

keeping only the noise coefficients, the proposed denoising tech-
nique can be reversed for data designaling. The partitioned signal
and noise can be used for a detailed analysis of the structure and
source physics (e.g., Yang, Liu, and Langston, 2020; Zhang and
Langston, 2022), although it is beyond the scope of this study.

SYNTHETIC TEST
We compute synthetic seismograms using a frequency–wave-
number integration method (Zhu and Rivera, 2002) at a dense
square array, which is composed of 32 × 32 stations with an
interstation distance of 200 m. A double couple source is
placed at a depth of 10 and 80 km away from the array center
with an azimuth of 90°. A 1D community velocity model (Lin
et al., 2007) combined with attenuation models (QP and QS) in
southern California (Hauksson and Shearer, 2006) is adopted
here (Table 1). The synthetic seismograms have a sampling
rate of 50 samples per second. The real seismic noise is taken
from a dense array deployed in Long Beach, California, con-
sisting of >2000 stations with an average spacing of 120 m (Lin
et al., 2013) and added to the synthetics with an SNR of 3,
which was calculated by a ratio of the mean amplitude within
the signal time window to that within the noise window.

We process the synthetic waveform with the above pro-
cedure. We first measure the noise level in an 8-s presignal win-
dow after the curvelet transform followed by a determination of
noise threshold in each curvelet parameter group though the
ECDF method. Then we apply hard and soft thresholding to
remove the noise coefficients and recover the denoised signals
via the inverse curvelet transform. The results show that most of
the background noise is removed successfully by nonlinear
thresholding methods. The denoised signals are mainly compat-
ible to the original synthetics, not only in phase arrival but also
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TABLE 1
1D Background Velocity, Density, and Attenuation Model for Synthetic Seismogram Simulation

Depth (km) VS (km/s) VP (km/s) Density (g= cm3) QS QP

0.5 0.80 2.0 1.55 70 150
1.5 2.88 5.0 2.65 150 300
5.5 3.17 5.5 2.73 300 500
9.5 3.63 6.3 2.85 600 1200
15.5 3.70 6.4 2.88 400 800
33 3.93 6.8 2.94 500 1000
50 4.50 7.8 3.10 500 1000
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Figure 4. (a) The raw seismogram for a local event and corresponding scalo-
gram of the curvelet coefficient magnitudes over a 60 s duration time at one
station from a dense nodal array deployed in Ohio during August 2013. A
coarser curvelet scale has a smaller parameter group index. (b) The statistics
of the absolute value of noise coefficients within the first 30 s time window.
The non-Gaussianity having values of −1 and 1 are represented by black
solid lines. A black arrow points out a curvelet parameter group having a

non-Gaussianity of 12.57. (c) Comparison of the mean magnitude of noise
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functions calculated by the empirical cumulative distribution function (ECDF)
method and Gaussian criterion. (d) The computed ECDF curve for the
curvelet parameter group having a non-Gaussianity of 12.57. The threshold
β is determined with a probability of 0.99. The color version of this figure is
available only in the electronic edition.
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in waveform shape, validating the effectiveness of our curvelet
method (Fig. 5a,c,e,g). Furthermore, it is evident that soft
thresholding surpasses hard thresholding in enhancing SNR
(Fig. 5e,g). The characteristics of main phases, for example,
P and S waves, are mostly preserved after denoising. However,
the amplitudes of some phases are unexpectedly reduced,
especially for P- and S-coda waves, because their amplitudes
are almost at the same level as the background noise.

We also compare the performance of our curvelet method
with digital filtering and other widely used approaches such
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Figure 5. Seismograms recorded at one station of the virtual dense array for
(a) synthetic, (c) synthetic added with Long Beach array noise, signal
denoised by (e) hard thresholding, and (g) soft thresholding using the
curvelet-based ECDF method compared with the denoised signal using a
(b) Butterworth band-pass (0.2–3 Hz) filter, (d) wavelet, the S (f) transform,
and (h) wavelet packet technique. The corresponding continuous wavelet
transform (CWT) scalogram representing the frequency content distributions
over time is shown below each subfigure. The wavelet, S transform, and
wavelet packet technique are all implemented with the level-dependent
universal threshold. The color version of this figure is available only in the
electronic edition.
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as wavelets, the S transform, and the wavelet packets (Fig. 5b,
d,f,h). A zero-phase Butterworth filter was used to filter the
seismogram between 0.2 and 3 Hz, which is the most ener-
getic frequency band for the synthetic signal. The wavelet, S
transform, and wavelet packet methods are all implemented
with the level-dependent universal threshold and applied to
denoise the data by soft thresholding. To get a better under-
standing of the strength and weakness of all of the methods, a
detailed quantitative evaluation of the improvement in SNR,
P-wave arrival difference, spectral losses, and waveform sim-
ilarity is provided in Table 2. Herein, the spectral loss is cal-
culated by measuring the overall change in Fourier spectrum
after denoising and that of the noise-free synthetic signal over a
frequency band of 0.02–25 Hz, which mostly reflects the differ-
ence in the frequency content. A negative spectral loss or a valid
spectral abundance is attained because the introduced noise gen-
erally has a broader frequency coverage. The quantitative results
clearly demonstrate that our curvelet method achieves the fewest
spectral losses, which is anticipated because the curvelet trans-
form and subsequent thresholding are conducted in the spatial
domain rather than the time–frequency domain. Moreover, the
curvelet method achieves the highest correlation coefficient and
smallest time delay of P-wave arrival, further verifying the effi-
ciency of our curvelet method. The application of band-pass fil-
tering does not effectively remove the noise, but other
methodologies can successfully improve the SNR. The highest
SNR of ∼153 is obtained by wavelets, slightly higher than the
results using curvelets (∼145).

To investigate the effect of noise window length during the
thresholding, we chose different time durations to estimate the
noise thresholds (Table 3). Obviously, noise can be compressed
much more with a longer length because the thresholds deter-
mined by the ECDF method are more precise with larger
amounts of noise samples. For example, compared with a 2 s
noise window (or 100 noise samples), using a 6 s noise window
(or 300 noise samples) drastically improves the SNR from
∼47 to 140 by soft thresholding. On the other hand, a limited
improvement of SNR ∼147 is attained with an 8 s noise
window. The results suggest taking a noise window with an
approximating noise sample of ∼300–500 is good enough for
seismic denoising using stationary noise data.

APPLICATIONS ON DENSE ARRAY DATA
As part of the Utica 3D field experiment by Global Geophysical
Services, a dense array composed of 400 AutoSeis high fre-
quency seismometers (4–84 Hz bandwidth) with an average
spacing, Δd, of 30 m has been deployed in Belmont County,
Ohio, for one month since 23 August 2013 (Fig. 6). The passive
data records include local high-frequency quarry blasts and
global earthquakes.

The raw datasets are stored in SEGY format every 60 s. We
inspect all the waveforms recorded by the array and removed
null traces. Because the seismic signals mostly occupy the fre-
quency contents of 0.1–20 Hz, we decimate the demeaned
and detrended seismograms to a sample rate of 50 Hz to
improve the computation efficiency. Here, we chose two exam-
ple recordings to demonstrate noise reduction by curvelets. To
avoid the irregular spacing of the original dataset, a second-
order polynomial interpolation is used to create a smoothly
varying spatial mesh before transferring the wavefield to cur-
velet domain (Fig. 7a,b). To minimize the misfit between the
interpolated wavefield and the raw data, we calculate the misfit
before and after remeshing by summing the distance between
stations and the nearest interpolated point. After testing, 256
×256 grid points with an average grid spacing of 2 m are
optimal to obtain an equal-spaced wavefield with a small total
misfit of ∼9 m (or 0:3 × Δd) (Fig. 7c,d). As implemented, the
curvelet transform expands a 256 × 256 spatial wavefield to a
curvelet coefficient matrix with scales ranging from 1 to 5
(Candes et al., 2006). In our cases, the spatial frequency or
wavelength of scale 1 is >∼60 m. Scales 2, 3, 4 give wavelengths
of ∼60–30 m, ∼30–15 m, and ∼15–8 m, respectively. The finest
scale of 5 has a wavelength <∼8 m, smaller than the misfit
of ∼9 m.

The first example contains wavefield from a high-frequency
2 lb dynamite shot event (labeled as event 1) with high noise
level. A presignal window of 13 s is used to calculate the noise
thresholds. No filter is applied to the data before performing the
curvelet method. As shown in two individual time snapshots
(Fig. 8), the noise fields are effectively removed by the curvelet
method (Fig. 8c,d), particularly evident for the pre-event one
(Fig. 8b). Moreover, the signal propagation pattern is preserved
without major distortion by thresholding. Signals arising at

TABLE 2
Quantitative Comparison among the Synthetic and the Signal Denoised by Several Methods

Methodology SNR P Wave Arrival Delay (s) Spectral Loss (%) Correlation Coefficient

Synthetics added with noise 3 0.04 −43.3 0.892
Curvelet (ECDF) 145 0.00 8.0 0.922
Butterworth band-pass filter 7 0.02 21.7 0.900
Wavelet (universal threshold) 153 0.01 15.3 0.915
S transform (universal threshold) 111 0.01 15.6 0.920
Wavelet packet (universal threshold) 79 0.03 10.6 0.895

ECDF, empirical cumulative distribution function; SNR, signal-to-noise ratio.
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around 14.1 s are identified as high-frequency body waves with a
group velocity of ∼4.5 km/s from the shot located to the south-
southeast. By inspecting the waveform at one station, we find
that most of the background noise is successfully removed
(Fig. 9). We also note some small amplitudes within the whole
duration for hard thresholding, probably caused by an incom-
plete removal of noise coefficients. Conversely, SNR has been
much improved through soft thresholding, increasing from
2.5 to 131.6.

Another example is teleseismic P waves from an Mw 7.0
earthquake that occurred in the Aleutian Islands (labeled
as event 2). A 20-s noise window is chosen for determining
the noise power. Results from hard and soft thresholding
show that background noise is significantly reduced
(Fig. 10a–c). Soft thresholding outperforms hard threshold-
ing with a higher SNR after denoising, increasing from 5.1
to 126.3. Not only the earthquake signal is recovered robustly
from the noisy raw data, but the curvelet method also yields
an accurate estimate of the noise by designaling (Fig. 10d).
Therefore, application of soft thresholding for dense array
data is an effective way to separate wavefield into signals
and noises.

DISCUSSION
The curvelet-based denoising method has yielded success in
improving SNR and preserving signal waveforms for synthetic
and observational data. Background noise can be removed suc-
cessfully by choosing a long enough pre-event window to esti-
mate the noise level. Compared with the traditional Fourier-
based and wavelet denoising procedures, the curvelet tech-
nique provides an effective way to handle a large 2D array data-
set and process all the waveform data per snapshot. After
mapping the wavefield amplitudes into the curvelet domain,
the noise coefficients at finer scales (or larger spatial frequency)
reflect contributions of local or regional noise sources.
Averaging over all array channels in such scales tends to
remove these coefficients because they only exist at part of sta-
tions. This characteristic is an improvement over wavelet tech-
niques because noise on individual seismograms will go into

N
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Figure 6. Image from Google Earth showing the location and configuration
(inset) of Utica array deployed in Belmont County, Ohio. The Ohio–West
Virginia state boundary is denoted by a white dashed line. The color version
of this figure is available only in the electronic edition.
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thresholding in the application of wavelets without considering
adjacent stations. Figure 11 demonstrates this with a compari-
son of the soft-thresholded signals of event 2 using curvelets,
wavelets, the S transform, and wavelet packets. All techniques
result in significant improvement in SNR. Among these, the
signal recovered by curvelets has the highest SNR of 126
and shows a broader frequency range but a slightly sharper
waveform change compared with that from the wavelet and
S transform analyses. The wavelet packet method also shows
fewer frequency losses but has a less improved SNR of 81.
Although the application of curvelet method implemented
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TABLE 3
Improved Signal-to-Noise Ratio (SNR) by Soft Thresholding in the Synthetic Test Using a Noise Window with Different Time
Durations

Length of Noise Window (s) 2 3 4 5 6 7 8

Improved SNR with uncertainty 46.8 ± 7.0 59.1 ± 10.1 74.8 ± 12.7 125.7 ± 11.5 140.6 ± 13.4 145.1 ± 9.2 147.3 ± 7.9

The uncertainty represents a confidence level of 99.7%.

Figure 7. (a) Raw wavefield observed by the Utica array at time 5 September
2013 15:08:51 (UTC). The dot represents the waveform amplitude recorded
at each station. (b) Interpolated wavefield with 256 × 256 grid points.
(c) The location of 16 × 16 interpolated grid points (red dots) and original
stations (black triangles). (d) The total distance misfit between the station
and the nearest interpolated point with 2n�n � 4,5,6,7,8,9) grid points at a
side (black dots). The interpolated matrix of 256 × 256 grid points gives an
overall relative distance misfit of ∼9 m. The color version of this figure is
available only in the electronic edition.
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with the nonlinear thresholding on both synthetic and the
Utica array data has shown encouraging results, other
user-customized threshold methods (e.g., Parolai, 2009) have
been shown effective to improve the SNR of array data. The
efficiency of different denoising thresholds should be more
comprehensively investigated in future studies.

On the other hand, we also notice some limitations of our
curvelet technique. One drawback is that curvelet lacks a tem-
poral continuity because it is manipulated for different snap-
shots, and therefore the 2D spatial wavefield at each time
point is treated separately from the others. There is no constraint
to ensure smoothness of the wavefield over the lag time. A com-
bination of wavelets in time and curvelets in space could be
promising to address this problem (Zhan et al., 2018). On
the other hand, the denoising resolution of curvelets is limited
by the spatial spacing of the array. For a dense array with an
irregular spacing, directly applying the curvelet transform to
the nonequispaced wavefield could lead to biased results. To

overcome this, we applied a second-order polynomial algorithm
to interpolate the original wavefield to a regular grid network
prior to the curvelet transform because the seismic wavefronts
in 2D space is generally affiliated with an ℓ2 minimization prob-
lem (Zhang and Langston, 2020). This interpolation processing
works well for the ultradense Utica array considering that the
relative distance misfit (∼9 m) is much smaller than the wave-
length of body waves. However, the second-order polynomial
interpolation may underfit for the observations of complicated
wavefields, especially for a sparse array. A nonequispaced fast
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Figure 8. Display of (a,c) raw wavefield and (b,d) denoised wavefield at two
different time snapshots for a 2 lb shot event (labeled as event 1). The
original time is 4 September 2013 14:41:00 (UTC). The upper two maps
(a) and (b) are for time t = 5.44 s before the body wave arrives and 15.34 s
after the signal arrival for the bottom maps (c) and (d). Notes that the color
bars have different ranges for upper and lower maps. The color version of
this figure is available only in the electronic edition.
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discrete curvelet transform method (Hennenfent et al., 2010)
may provide an alternative to resolve the regularization of
irregularly sampled data.

As in any denoising scheme, the performance of noise
reduction depends on the noise level. Noises can be separated
from signals for regions with high SNR. However, coda por-
tions of waveforms can have similar properties as the back-
ground noise and are preferentially reduced. Signals close to
the noise threshold can also be severely reduced. With wavelet
methods, the success of thresholding demands data with high
SNR in some portion of the transform space. The strength of
using curvelets is that continuous wave-like features will be
preserved at the expense of more random spatial fluctuations
in ground motions. Moreover, although the curvelet method
proposed in this study is initially designed to denoise data
of 2D arrays, it is also applicable to 1D arrays by modifying
the transformation to convert time-domain waveform data
(distance–time) into the curvelet domain instead of using
2D spatial wavefield data, which has been basically described
by Herrmann et al. (2007).

CONCLUSION
We propose a curvelet-based denoising method to remove the
background noise recorded on dense 2D seismic arrays. The
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Figure 9. Display of (a) raw seismogram and denoised seismograms by
(b) hard and (c) soft thresholding using the ECDF method at one station
from the Utica array. The original time is 4 September 2013 14:41:00 (UTC).
The red windows outline the body waves of a 2 lb shot (event 1) within 13–

17 s, the details of which are shown in the following magnified plots. The
blue dashed lines indicate the first arrival time of body waves around 14.1 s.
A 13 s noise window before the event is used for the threshold estimation.
The color version of this figure is available only in the electronic edition.
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Figure 10. Time-series plot of (a) raw seismogram, (b) hard threshold
denoised signal, (c) soft threshold denoised signal and (d) noise for the
30 August 2013 Mw 7.0 Aleutian earthquake (labeled as event 2). The
original time is 30 August 2013 16:35:00 (UTC). A 20 s noise window
before the P arrival is used for the threshold estimation. Note that there is a
smaller amplitude range in the noise plot.
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noise fields within a pre-event window are used to estimate the
thresholds via a detailed characterization of the noise power in
the curvelet domain. A synthetic test and application on data
from the Utica array illustrate the effectiveness of nonlinear
thresholding by the ECDF method. For nearly Gaussian noise,
a more ideal denoising result is achieved with curvelets through
the ECDF approach compared with the conventional curvelet
techniques. This approach provides a new option besides the
traditional Fourier and wavelet denoising methods to recover
signals for dense arrays. The partitioned noise can be used for
seismic interferometry studies, and the denoised seismograms
will lead to an advanced earth structure imaging or source
physics characterization.

DATA RESOURCES
The Long Beach array data used in this study is the property of
Nodal Seisimic and Signal Hill Petroleum Inc., and permission
from them is required to access it. The codes for fast digital
curvelet transform are described by Candes et al. (2006).
Matlab software for continuous wavelet transform (CWT)

F
re

q
u

e
n

c
y

 (
H

z
)

–5

0

5

–5

0

5

(a)

0

–5

5

(b)

(c)

Raw

Denoised by curvelet

Denoised by wavelet

10–2

10–1

1

10

0 10 20 30 40 50

Time (s)

–5

0

5

0 10 20 30 40 50

Time (s)

(e) Denoised by wavelet packet

60 60

–5

0

5

(d) Denoised by S transform

F
re

q
u

e
n

c
y

 (
H

z
)

10–2

10–1

1

10

F
re

q
u

e
n

c
y

 (
H

z
)

10–2

10–1

1

10

F
re

q
u

e
n

c
y

 (
H

z
)

10–2

10–1

1

10

F
re

q
u

e
n

c
y

 (
H

z
)

10–2

10–1

1

10

SNR = 3

SNR = 126

SNR = 108

SNR = 111

SNR = 81�
A

m
p

li
tu

d
e
 (

  
 m

)
�

A
m

p
li
tu

d
e
 (

  
 m

)
�

A
m

p
li
tu

d
e
 (

  
 m

)
�

A
m

p
li
tu

d
e
 (

  
 m

)
�

A
m

p
li
tu

d
e
 (

  
 m

)

Figure 11. Time-series plot and corresponding CWT scalograms of event 2
(a) raw seismogram and soft-thresholded signals based on (b) curvelets,
(c) wavelets, (d) the S transform, and (e) wavelet packet method. The CWT
scalogram represents the energy distribution over frequency and time. The
color version of this figure is available only in the electronic edition.
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processing is introduced by Langston and Mousavi (2019) and
available from the coauthor’s website at http://www.ceri
.memphis.edu/people/clangstn (last accessed July 2022). The
frequency–wavenumber (f-k) seismic package used for com-
puting synthetic seismograms is provided by Lupei Zhu
(Zhu and Rivera, 2002). Google Earth, published by Google
Inc. (https://www.google.com/earth; last accessed September
2023) is used in this article and is gratefully acknowledged.
Although raw data from the Utica array are embargoed by
Global Geophysical Services, the supplemental material
includes the short time section of processed data for the
two event recordings that we analyzed.
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