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S U M M A R Y 

Stress drop is a proxy of understanding earthquake source process, and it is controversial 
whether the stress drops of induced earthquakes associated with hydraulic fracturing and 

injection activities are similar to those of tectonic earthquakes. The measurement of stress 
drops is usually biased due to the limitations of observation means, or hidden issues in the 
estimation approaches. Utilizing a local short-period seismic network, we investigate the stress 
drops of induced earthquakes in Weiyuan Shale Gas Field in Sichuan Province, China from 

2019 to 2020. Totally 11 844 earthquakes are involved in the analysis, and their stress drops 
are obtained using an improved approach on the basis of the traditional spectral decomposition 

method combined with a global optimization algorithm to avoid stacking of spectra that is 
found leading to source parameter underestimation. We divide the studied area into three 
subareas, and the results show strong stress drop heterogeneity across the entire region. We 
obtain an average stress drop of 2.29 MPa, piecewise stress drop dependence to earthquake 
magnitude, and complex depth dependence pattern. Our results indicate that stress drops of 
induced earthquakes are overall consistent with the induced earthquakes in other areas as well 
as tectonic earthquakes in different environments. Meanwhile, the complexity in the stress drop 

dependence to depth possibly reflects the variability of stress drops for different earthquake 
triggering mechanisms. 

Ke y words: Earthquak e source observations; Induced seismicity; Seismicity and tectonics. 
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 I N T RO D U C T I O N  

tress drop is a useful tool to investigate earthquakes associated
ith unconventional oil and gas production. It is defined as the av-

rage shear stress change accompanied by earthquake occurrence
n a fault. Stress drop can be used to e v aluate strong ground mo-
ion that directly relates to impacts on the environment and human
ociety (e.g. Baltay et al. 2019 ). Besides, stress drop variability has
een found rele v ant to fault behaviours from induced earthquakes.
 or instance, W u et al. ( 2018 ) find that the stress drops of induced
arthquake sequences in Oklahoma vary both spatially and tempo-
ally, reflecting strong fault heterogeneity potentially related to fluid
njection. Ho wever , stress drop estimation is usually subject to un-
ertainties from various sources. Similar approaches using different
ata sets with dif ferent observ atory setups sometimes lead to incon-
istent absolute values (e.g. Allmann & Shearer 2007 compared to
hang et al. 2022 for Parkfield area microearthquakes), and the
pplication of different methods on the same study area or similar
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ectonic environments often results in inconsistent conclusions such
s whether earthquakes are self-similar (e.g. Mayeda et al. 2005 ;
ye et al. 2005 ; Shearer et al. 2006 ; Allmann & Shearer 2009 ; Oth
013 ; Uchide et al. 2014 ; Goebel et al. 2015 ; Zhang et al. 2022 ).
herefore, mitigating the uncertainties in the stress drops is highly

mportant to achieve less biased interpretations. 
There are open debates about whether the source characteristics

f induced earthquakes are similar to that of natural earthquakes.
ne of the hot topics focuses on whether the stress drops of in-
uced earthquakes are similar to those of natural earthquakes in
erms of their absolute values and dependence on earthquake scales.
uang et al. ( 2017 ) investigated the stress drops of both types of

arthquakes in multiple research areas, concluding that there is no
ystematic difference between them. This was supported by other
tudies (e.g. Wu et al. 2018 ; Holmgren et al. 2019 and Chu & Sheng
023 ), who found similar stress drop level to natural earthquakes and
elf-similar relationship of induced earthquakes in Oklahoma, USA,
estern Canada and Sichuan, China. On the other hand, studies
oyal Astronomical Society. This is an Open Access 
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such as Agurto-Detzel et al. ( 2017 ) found lower absolute stress 
drops of < 1 MPa of induced earthquakes in southeastern Brazil, 
and Klinger & Werner ( 2022 ) reported non-self-similarity of in- 
duced ear thquakes. Goer tz-Allmann et al . ( 2011 ) obser ved varied 
stress drop levels with location, indicating that the stress drops of 
induced earthquakes near injection are lower than farther ones, and 
such pattern is consistent with earthquake migration accompanied 
by fluid migration. The differences in the results may have multiple 
sources, including the mechanisms of the induced earthquakes, dif- 
ferent ways of data processing, and the differences and limitations 
of various methods. 

Rongxian–Weiyuan area, located in Southeastern Sichuan 
Province in China, is a suitable candidate to explore the problem 

mentioned above due to the high seismicity in the recent years from 

injection activities. The area was seismically silent in the history 
until massive shale gas exploration started since 2014 (Yang et al. 
2020 ). A drastic increase in seismicity appeared in 2018 coinciding 
with intensive fracking activities, which was followed by multiple 
M L > 3 and even a few M L > 4 earthquakes, including a damaging 
and deadly M L 5.2 earthquake in Rongxian County in late Febr uar y 
2019 after the Chinese Spring Festi v al. The earthquake is thought 
to occur on Molin Fault, which is a thrust fault (the dominant focal 
mechanism for M s > 3 earthquakes in the region, Yi et al. 2020 ) 
with NW–SE orientation located on the south of Weiyuan anticline, 
the characteristic geological structure in the region. There are con- 
current hydraulic fracturing activities in a nearby injection well; 
whether the major earthquake was triggered by fluid is still unclear, 
as there is no strong evidence of fluid migration from injection 
zones to the east of the fault (Yang et al. 2020 ). Stress drop can 
be a potential candidate that may help understand the earthquake 
triggering mechanisms in the subsurface (e.g. Goertz-Allmann et 
al . 2011 ; Huang et al. 2017 ; Chu & Sheng ( 2023 ) obtained the 
stress drops of 17 M 2.2–2.75 earthquakes to be ranging from 2.5 
to 54.7 MPa, but large-scale stress drop analysis that characterizes 
the tectonic heterogeneity similar to Allmann & Shearer ( 2009 ) and 
Zhang et al. ( 2022 ) in this region is yet missing. 

Stress drops of low-to-intermediate scaled earthquakes are usu- 
ally estimated using seismic waves rather than geological or geodetic 
approaches, as these earthquakes are not capable of creating visi- 
ble surface displacements. A common method is a spectral ratio 
method calculating the ratio between the observed spectrum of an 
earthquake and that of a nearby smaller earthquake as an empiri- 
cal Green’s function (eGF; e.g. Abercrombie 2014 ; Lenglin é et al. 
2014 ; Huang et al. 2017 ; Shearer et al. 2019 ; Chu & Sheng 2023 ). 
Such approach requires careful selection of eGF events to be asso- 
ciated with the main event, which are usually 1–2 magnitude larger 
than the eGF events (Abercrombie et al . 2021 ). Thus, this method 
can hardly solve for the stress drops for already small earthquakes 
(e.g. M < 2.0), and cannot be applied to stress drop analysis on a 
large data set including several 10 000s of earthquakes due to low 

efficiency of eGF selection and source parameter inversion. The 
spectral decomposition and stacking method (Shearer et al. 2006 ) 
is developed to solve for the stress drops in seismically dense areas. 
This method iterati vel y separates the average source term, station 
term and path information for each earthquake–station pair, thus 
it requires large-scale data feed. It has been applied to numerous 
studies on stress drop analysis covering the scales from locally to 
globally (e.g. Allmann & Shearer 2007 ; Allmann & Shearer 2009 ; 
Chen & Shearer 2013 ; Uchide et al. 2014 ; Chen & Abercrombie 
2020 ; Pennington et al. 2021 ; Zhang et al. 2022 ). However, it re- 
quires a strong assumption of earthquakes self-similarity meaning 
all the earthquakes should have similar stress drop levels, which is 
still under debate as mentioned above. Then improved methods are 
developed to avoid such assumption, such as Trugman & Shearer 
( 2017 ) obtained an optimized linearly scaling relationship of log10 
stress drops to the earthquake magnitude, and Chen & Abercrombie 
( 2020 ) avoided the assumption of stress drop dependence on earth- 
quake magnitude; the former found earthquake non-self-similarity 
for small earthquakes (e.g. M < 2). Zhang et al. ( 2022 ) use larger 
earthquakes ( M > 3) to correct for the potential underestimation 
of small-earthquake stress drops following the approach by Chen 
& Abercrombie ( 2020 ), and also found obvious magnitude depen- 
dence at low magnitudes. Whether the non-self-similarity originates 
from the methods remains unclear, though it has been found that 
the limitation of sampling rate could result in underestimated cor- 
ner frequencies (Chen & Abercrombie 2020 ; Zhang et al. 2022 ). 
Another possible source of stress drop biases could lie in the man- 
ner the spectra are processed in various methods—stacking. The 
purpose of stacking the spectra is to mitigate the influence from 

noise, but stacking the spectra across earthquakes could potentially 
oversmooth the fall-off point of the spectra introducing larger un- 
certainties in the earthquake corner frequencies. 

In this study, we aim at designing a new approach inheriting the 
spectral decomposition method, while attempting to solve the prob- 
lem of unexpected self-similarity assumptions and testify if stacking 
could lead to biased stress drop estimation. We will perform a se- 
ries of synthetic tests to e v aluate the performance of the proposed 
method against a previous method applied in Chen & Abercrom- 
bie ( 2020 ). After that, the proposed approach will be implemented 
to estimate stress drops of the large-scale induced earthquakes in 
Sichuan, China, and the stress drops will be used to investigate the 
earthquake scaling relationship, as well as the characteristics of the 
stress drops in the region. 

2  M E T H O D  

2.1 Spectral-decomposition-based approach 

An observed spectrum of an earthquake on a seismometer can been 
seen as the convolution of an event term (source), a path term 

and a site term. Estimating the source parameters relies on the 
source information, therefore it is important to separate the source 
contribution from other effects in the observed spectra, such as site 
information and travel path effect, which are usually unknown and 
hard to directly remove. The spectral-decomposition method solves 
for the site and path information and isolate the source spectrum 

in an iterati ve w ay, and the source spectrum does not reflect any 
directivity impacts because it is the averaged spectra recorded at the 
stations over all azimuths. (Shearer et al. 2006 ; Allmann & Shearer 
2007 ; Zhang et al. 2022 ) (Fig. 1 ). We follow Shearer et al. ( 2006 )
to obtain a separated average event term for each earthquake from 

the observed spectra. 
Ho wever , it should be noted that the event term is not equal to 

its source term; it reflects the relative shape of a source term, and 
extra correction is required on the event spectra including residual 
site amplification and path effects. Besides, the proposed method 
assumes a simple homogeneous attenuation model, and the path 
term is only related to travel time; thus, the correction could ma- 
jorly contain the compensation to the attenuation information. To 
obtain the correction, different approaches assume either a refer- 
ence site term (Bindi et al. 2020 a; Oth et al. 2011 ) or a source 
model (Shearer et al. 2006 ; Trugman & Shearer 2017 ; Shearer et 
al . 2019 ; Chen & Abercrombie 2020 ; Zhang et al. 2022 ). This study 
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Figure 1. Demonstration of the spectral decomposition (SD) method extracting the event spectra from observed spectra at stations. The figure shows an 
example of one earthquake, but the SD method is applied on a large data set. The example spectra are shown in log10 scale on x -axis (frequency) and linear 
scale on y -axis (amplitude). 

Figure 2. (a) Demonstration of the w orkflo w of obtaining the empirical correction spectrum (ECS) using the SNSS (previous) method with the event spectra 
obtained using the spectral decomposition (SD) method. Different colours of thin curves represent the stacked event spectra that are sorted into different 
magnitude bins from M w1 to M w5 . The bold curves represent the ECS corrected spectra (black curve) from the thin curves in the corresponding magnitude bins. 
The ECS curve is obtained by fitting the bold curve in magnitude bin M w1 (the lowest magnitude bin) to the Brune’s model calculated using the moment and 
stress drop in this bin. (b) Demonstration of the w orkflo w of obtaining the ECS using the DESC (new) method. 1: Assume stress drops in the five magnitude 
bins, obtain Brune’s spectra for each earthquake (coloured curves), and the ECSs for the individual earthquakes are their difference from the corresponding 
event spectra (grey curves). 2: Calculate the medians of the ECSs of individual earthquakes (grey curves) in their own magnitude bins (coloured bold curves). 
3: Minimize the difference among the median ECSs in different magnitude bins (coloured thin curves) utilizing the DE method, and finalize an overall ECS for 
further spectral analysis (bold black curve) by calculating the median of the per-magnitude-bin median ECSs. Note that the x -axis scales in 2 and 3 are set to 
linear to show the linearity of the ECSs against frequency in this method. 
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Figure 3. Corner frequency recovery ratio after stacking the Brune-shape 
theoretical spectra at different magnitudes. Magnitude bins are set to 1.0–3.0 
with an interval of 0.2; in each magnitude bin, 200 earthquakes with the same 
magnitude (centre of each bin) obtain their synthetic spectra by assigning 
them with normally distributed stress drops, centred at a reference stress 
drop of 3 MPa with a standard deviation (STD) of log10 stress drop of 0.25 
(blue curve) and 0.5 (red curve), to simulate realistic stress drop scattering. 
The stacked spectrum in each magnitude bin is compared to the Brune’s 
model to estimate an inverted corner frequency, and the recovery ratio (the 
square markers) is defined as the ratio between this inver ted cor ner frequency 
and the theoretical Brune’s spectrum at the corresponding magnitude and 
3 MPa stress drop (aka. reference spectrum). The triangle markers denote 
the stress drop recovery ratio in each magnitude bin. 
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follo ws the latter , and the correction term accounting for attenua- 
tion information is named the empirical correction spectrum (ECS). 
Since the ECS represents a homogeneous attenuation distribution 
over the space spanned by the involving earthquakes and stations, 
for heterogeneous underground medium the proposed ECS may re- 
sult in biased source spectrum for an earthquake after correction 
(as demonstrated by Allmann & Shearer 2007 ; Zhang et al . 2022 ). 
The complex structure from body-w ave tomo graphy (Zi et al. 2023 ) 
and ambient noise imaging (Zeng et al. 2020 ) of the Weiyuan area 
may indicate heterogeneity of attenuation, therefore an appropriate 
data processing w orkflo w is needed to mitigate such influence on 
the stress drop estimation, which will be introduced in Section 4. 
Then, the source spectra representing the real earthquake source 
information can be obtained by subtracting the ECS from the event 
spectra. 

2.2 Calculation of stress drop from earthquake source 
spectra 

We implement Brune’s source spectrum model to estimate the earth- 
quake stress drops for small earthquakes (Brune 1970 ). In this 
model, the far-field displacement spectrum of an earthquake can 
be represented as: 

s ( f ) = 

M 0 

1 + 

(
f 
f c 

)n , (1) 

where M 0 is the seismic moment of the earthquake, f c is the corner 
frequency describing the source duration and n is the fall-off rate ( n 
is set to 2 in this study representing an ω 

−2 model). By assuming a 
simple circular rupture for a small ear thquake, the cor ner frequency 
can be written as (Brune 1970 ; Madariaga 1976 ): 

f c = k 
β

r 
, (2) 

where β represents shear wav e v elocity, k is a constant depending 
on model assumptions (e.g. Kaneko & Shearer 2014 , 2015 ), and r 
stands for source radius. We choose k = 0.32 based on Madariaga 
( 1976 ), consistent with Allmann & Shearer ( 2007 ) and Kaneko & 

Shearer ( 2015 ). For the shear velocity, we use the tomography results 
of the same studied area from Zi (2022), and for each earthquake, 
the shear velocity is determined at the nearest grid point value in the 
tomography results to the earthquake location. Then the stress drop 
( �σ ) can be calculated from seismic moment and source radius 
according to Eshelby ( 1957 ): 

�σ = 

7 

16 

(
M 0 

r 3 

)
= M 0 

(
f c 

0 . 42 β

)3 

, f c = 0 . 32 
β

r 
. (3) 

This relationship enables deri v ation of stress drop from corner 
frequency for a single earthquake. It should be noted that the stress 
drop estimated from spectral fitting must be considered an approxi- 
mation, because it is related to the dynamic properties of the earth- 
quake based on a simple circular rupture model assumption (Brune 
1970 ; Madariaga 1976 ), which essentially differ from the static 
stress drop that is derived from the actual slip and rupture dimen- 
sion. 

2.3 Empirical correction spectrum (ECS) estimation 

As discussed in Section 2.1 , an ECS is required for an earth- 
quake to extract its source term from the event term separated 
from earthquake–station-pair spectra. Current studies use different 
constraints on the source model assumptions: all of the methods 
sort the event spectra of earthquakes into small-size moment mag- 
nitude bins (usually the size is set to 0.2–0.3), and stack the event 
spectra in each magnitude bin and obtain a representative average 
event spectrum for each bin. Then, average stress drops in these 
magnitude bins are needed to obtain an overall ECS; Shearer et al. 
( 2006 ) and Trugman & Shearer ( 2017 ) require fixed stress drop 
scaling relationship with earthquake moment (constant stress drop, 
or first-order scaling stress drop across all the magnitude bins), 
while Chen & Abercrombie ( 2020 ) and Zhang et al. ( 2022 ) avoid 
assuming the scaling relationship and solve for an ECS by mini- 
mizing the difference between ECS-corrected source spectra and 
Brune’s spectra in different magnitude bins (Stacking with No Self- 
Similarity assumption, SNSS, see demonstration in Fig. 2 a). Both 
constraints have their own advantages and disadvantages: constrain- 
ing the scaling relationship has lower time complexity as it does not 
rel y on massi ve spectral fitting b y magnitude bin, while constrain- 
ing the spectral shape cannot avoid this; on the other hand, fixing 
the scaling relationship may risk obtaining a significantly different 
attenuation level than reality (Shearer et al. 2006 ) or a complex 
trade-off between the attenuation (ECS) and the scaling factor of 
stress drop against magnitude (Trugman & Shearer 2017 ; Shearer 
et al. 2022 ). The key to alleviating the trade-off between calculation 
efficiency and accuracy of ECS is to accelerate the per-bin aver- 
age stress drop estimation while keeping stress drops free from any 
assumed scaling. 

Another hidden issue in the current methods is that after the earth- 
quakes are sorted into different moment magnitude bins, stacking 
the log10 spectra in the same magnitude bin is required to obtain 
the average moment and stress drop, which could cause biased 
spectra and underestimated corner frequency (this will be further 

art/ggae014_f3.eps
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Figure 4. Visualization of the extent of corner frequency underestimation at different magnitudes ( M w 1.0, M w 1.6, M w 2.4 and M w 3.0) in Fig. 2 . The 
b lack, b lue and red curves represent the reference spectrum, stacked spectrum at STD = 0.25, and stacked spectrum at STD = 0.5. The shallow blue and red 
curves are the individual theoretical Brune-shape spectra corresponding to each STD level. The vertical dashed lines denote the position of the inverted corner 
frequencies and the reference corner frequency with matching colours. The grey area marks the frequency range higher than the upper limit 40 Hz used for 
corner frequency inversion. 
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xplained in Section 3 ). To solve the problems above, we design a
ew approach to solve for the ECS from the event spectra called the
if ferential-e volution-based spectral correction (DESC). It imple-
ents a global-optimization algorithm named dif ferential e volution

DE) de veloped b y Storn & Price ( 1997 ) to find the optimized
ombination of stress drops in all the magnitude bins, which is a
igh-dimensional inversion problem. The DE algorithm has been
pplied in earth science studies for different purposes, for exam-
le earthquake hypocentral location (Gharti et al. 2010 ) and 1-D
nderg round velocity str ucture inversion (Zhang et al. 2016 ). The
roposed method is capable of providing fast and accurate solution
f average stress drops using the individual event spectra from the
ata set. 

The w orkflo w of the DESC method is belo w (see demonstration
n Fig. 2 b): 

tep 1: Sort the event spectra into different moment magnitude bins.
tep 2: Randomly generate a set of average stress drops for the
agnitude bins, and for each magnitude bin, calculate an indi-

idual ECS for each earthquake from the difference between its
vent spectrum and the Brune spectrum calculated using its own
oment and the stress drop in its belonging magnitude bin, and

btain an overall ECS by calculating the median of the indi-
idual ECSs in each magnitude bin at each frequency sampling
oint. 
tep 3: Compare the overall ECSs in different bins by calculat-
ng their per-frequency-sample standard deviation as the objective
unction. 
tep 4: Apply the DE method to iteratively minimize the objective
unction in Step 3 to find an optimized set of stress drops in Step
, and the optimized set corresponds to a final optimized ECS (the
edian of all the optimized per-bin overall ECSs). The minimization

f the objective function here is on the basis that the attenuation
ariability in a reasonably small area should be ignorable, and the
CSs for all the earthquakes in this area should be highly similar. 

n Step 4, we obtain an ECS that can correct for the source spectra of
ndividual earthquakes. Then, an identical spectral fitting approach
o that in Chen & Abercrombie ( 2020 ) is performed to compare each
ource spectrum to Brune’s model by each frequency sample, and
olve for the stress drop of each earthquake. It is important to clarify
hat we assume a constant Q for the attenuation model, and in Step
, the reason that the individual ECSs obtained from event spectra
n a single bin can be stacked is that with a frequency-independent
 -value, the ECS curve is expected to be linear against frequency
ith a slope proportional to the average t ∗ in the area; oppositely,

n the current methods the stacking approach may introduce biases
ecause the event spectra, supposedly the combination of local
ttenuation information and the source spectra, is non-linear against

art/ggae014_f4.eps
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Figure 5. Stress drop recovery ratio applying the SNSS (blue curve) and DESC (red curve) method. (a) tests using different input stress drops: 1.8 MPa (1), 
3.3 MPa (2) and 8.0 MPa (3), the same log10 input stress drop STD, and the same input stress drop scaling with magnitude; (b) tests using the same input 
stress drop of 3.3 MPa, different log10 stress drop STD of 0.25 and 0.5, and the same input stress drop scaling with magnitude (1 versus 2); the same input 
stress drop of 3.3 MPa, the same log10 stress drop STD of 0.5, and different input stress drop scaling factor 0 and 0.5 (2 versus 3). In each subplot, the upper 
panels represent the input stress drops VS. magnitude with black squares denoting the median stress drops in the magnitude bins of 1.0–4.0 sized 0.5, and the 
lower panels represent the stress drop recovery ratios using the two methods, accompanied by median values as squares and error bars pointing out the 25th 
and 75th percentile in different magnitude bins. 
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2.4 Stress drop correction with de pth-de pendent shear 
velocity 

Stress drop estimates are sensitive to vertical shear velocity change 
as shown in eq. ( 3 ). Essentially, the corner frequency is a repre- 
sentation of the rupture duration, thus related to rupture velocity 
that usually is assumed proportional to depth-dependent shear wave 
velocity in source parameter analyses (Allmann & Shearer 2007 ; 
Kaneko & Shearer 2014 ; Uchide et al. 2014 ; Abercrombie et al. 
2021 ; Zhang et al. 2022 ), while some others set the rupture veloc- 
ity as a constant of 0.9 times of the average local shear velocity 
(Shearer et al. 2006 ; Lengline et al. 2014 ). It has been found that 
using a depth-dependent rupture velocity model reduces the trend 
of depth dependence (Allmann & Shearer 2007 ; Zhang et al. 2022 ). 
In Abercrombie et al. ( 2021 ), they systematically discussed earth- 
quake focal depth as a factor of impact on stress drop estimation, 
re vealing that appl ying a depth-dependent rupture velocity model 
and accounting for the attenuation over depth, as mentioned above, 
leav e only ne gligible depth dependence of stress drops. In this anal- 
ysis, we also implement such a rupture velocity model based on the 
tomography results by Zi et al. ( 2023 ). 

3  S Y N T H E T I C  T E S T S  

We perform a series of tests using synthetic earthquake mo- 
ments and Brune-shaped spectra to e v aluate the performance and 
compare the difference between the DESC and SNSS methods. 

art/ggae014_f5.eps
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Figure 6. The statistics of the seismicity in the studied area. (a) Seismicity map. The circles indicating the individual earthquake locations are coloured by their 
occurrence time and sized by their local magnitudes. The magenta triangles represent the short-period local seismic stations utilized in this study. The beach 
balls show the focal mechanisms of the local magnitude larger than 4 earthquakes in the area. The brown curve depicts the surface trace of Molin fault. Three 
dashed rectangles in red, green, and blue show the three studied subareas. In the embedded panel, the shallo w yello w block roughly circles the location of the 
Weiyuan anticline. (b) Location statistics over latitude and depth. The histograms indicate the percentage of earthquakes at a certain latitude or depth. Colours 
are matched with the rectangles in (a). (c) The left-hand panel shows the example vertical-component waveforms of the February 2019 M L 4.9 earthquake in 
Rongxian recorded by station SYJ, GYN and ZST. The right-hand panel shows the corresponding event spectra of the waveforms in their own rows calculated 
by a multitaper based method named ‘pmtm’ in MATLAB. 
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irst, we try to reveal the potential influence of stacking spec-
ra on source parameter estimation (such as corner frequency and
tress drop), in light of which we then implement the DESC
nd SNSS methods on the synthetic data set with input source
arameters to compare both methods in terms of the ability to
ecover the input. Finally, we demonstrate the time complexity
f the DESC against the SNSS method by performing repetitive

art/ggae014_f6.eps
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Figure 7. The magnitude calibration process. The thick red line shows 
the linear regression of the moment magnitudes and the local magnitudes 
of all the earthquakes. The thin dashed black line shows where the mo- 
ment magnitude is equal to the local magnitude. The grey open circles 
and the blue closed circles represent the earthquakes with local magnitudes 
lower and higher than 4. The two magnitude scales are assumed equal at 
M w = M L = 3.0 in the magnitude calibration process. 
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3.1 Source parameters from stacked spectrum versus 
input Brune’s spectrum 

Stacking of spectra is widely used in different methods to mitigate 
the influence from noisy spectra on source parameter estimation; 
ho wever , this could lead to biased estimates provided limited fre- 
quency band. To visualize this, we design a test to compare the 
source parameter results with and without stacking of spectra. We 
choose 11 magnitude bins ranging from commonly seen M w 1.0 to 
M w 3.0 with an interval of M w 0.2 to investigate the influence on 
different scales of earthquakes. In each magnitude bin, there is a 
reference Br une’s spectr um with 3 MPa stress drop, and we gener- 
ate 200 Brune-shape spectra corresponding to 200 earthquakes with 
normall y distributed lo g10 stress drops centred at 3 MPa and the 
same moment magnitude, and these spectra will be stacked within 
each magnitude bin and fitted to Brune’s shape. White noise is 
added to the Brune’s spectra, which is set to perturbate the log10 
Brune spectra by random numbers generated between −0.25 and 
0.25. We also investigate whether the scattering of the stress drops 
affect the stacking results by setting two standard deviations of nor- 
mall y distributed lo g10 stress drops (STD): 0.25 and 0.5 according 
to the estimates in Zhang et al. ( 2022 ). The stacked spectra in dif- 
ferent magnitude bins are fitted to Brune’s shape to estimate their 
corner frequencies within the frequency band of 1–40 Hz, and the 
estimated corner frequency of the stacked spectrum in a certain bin 
is compared to the 200 input individual corner frequencies in this 
bin. 

Compared to the input reference Brune-shaped spectrum, we cal- 
culate the recovery ratio as the output source parameters divided by 
the input (Fig. 3 ). It can be observed that the corner frequency is 
underestimated at all the magnitudes, as well for the stress drops 
which is upscaled cubically from the corner frequencies; the under- 
estimation is more significant for smaller magnitudes than larger 
magnitudes, which for ms ar tificial magnitude scaling of source pa- 
rameters. As for different scattering levels of individual input stress 
drops (different STDs), in M w 1.0 bin the STD = 0.5 case produces 
34 per cent of underestimation compared to 12 per cent from the 
STD = 0.25 case, while in M w 3.0 bin such comparison becomes 
15 per cent versus 5 per cent. Such difference in the scaling from 

two different scattering levels indicate that the stacking methods on 
highly scattered stress drop values would lead to artificial magni- 
tude scaling, and in real data cases the apparent non-self-similarity 
conclusions. 

We also showcase the corner frequency recovery in four reference 
magnitude bins of M w 1.0, M w 1.6, M w 2.4 and M w 3.0 (Fig. 4 ). It can 
be found that the corner frequencies estimated in the M w 1.0 bin have 
exceeded the fitting upper bound of 40 Hz, meanwhile in the M w 1.6 
bin the corner frequencies are around 60–70 per cent of the upper 
bound. This finding matches the discussion in Chen & Abercrombie 
( 2020 ) that only the corner frequencies below 25 per cent of the 
upper bound can be resolved with high confidence, but this does 
not explain why the corner frequencies are still underestimated 
in M w 2.4 and M w 3.0 bins, albeit smaller. We suggest that the 
root of the underestimation is the distorted spectral shape after 
stacking the Brune-shaped spectra, shown as the difference between 
the black and red curves in Fig. 4 sharing the same plateau a.k.a. 
seismic moment. With that said, the biased stress drop estimates 
could also be ascribed to the frequency band limitation—we need a 
wide frequency band to ignore the distortion of the stacked spectrum 

near its fall-off spot after stacking. 
Here we reveal that the application of stacking on similar- 

magnitude earthquake spectra will result in absolute stress drop 
underestimation, and its artificial magnitude scaling simultaneously. 
Both could contribute to biasing the interpretations related to stress 
drops. Next, we visualize how the DESC method mitigates this 
issue. 

3.2 Stress drop recovery, DESC versus SNSS 

As discussed above, the DESC method does not involve direct stack- 
ing of spectra, thus we compare its ability to preserve the true 
source parameters with the SNSS method. We randomly generate 
500 earthquakes as a subset, which holds a moment magnitude 
range of M w 1.0 to M w 4.0, and their input stress drops are normally 
distributed with Brune-shaped spectra. We also add noise perturba- 
tion to the spectra; ho wever , to better simulate realistic situations 
we introduce natural noise extracted from our Weiyuan earthquake 
waveform data set, and the signal-to-noise ratios (SNR) of indi- 
vidual synthetic earthquakes range from 1.5 to larger than 10 000 
within 1–40 Hz. Here we perform a more comprehensive investiga- 
tion on multiple factors that may cast influence on the performance 
of source parameter recovery when solving for individual earth- 
quake stress drops: absolute stress drop level, stress drop scattering, 
and whether there is originally magnitude scaling of stress drops. 
Both methods are applied to solve for the individual stress drops 
and we calculate the stress drop recovery ratio of each earthquake; 
the process is repeated 10 times to mitigate uncertainties in the es- 
timates. The frequency band for spectral fitting is 1–40 Hz, and the 
magnitude bin size for the two methods is set as 0.2. 

We first set three different average stress drops as the reference 
of the normal distribution, and test the 500 earthquakes on them 

respecti vel y: 1.8, 3.3 and 8 MPa simulating low, intermediate and 
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Figure 8. (a) Stress drop distribution over space in the studied area. Circle colours indicate the log10 stress drop values, and circle sizes the local magnitude. 
Black stars emphasize the locations of the M L > 4 earthquakes. Diamonds show the locations of the local operation well locations. Other markers are identical 
to those in Fig. 6 (a). (b) A histogram of log10 stress drops over the whole studied area. The blue and red dashed lines show the median and average log10 stress 
drops, respecti vel y. The black curve is the Gaussian fitting of the histo gram. 
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igh stress drops in reality. We set the input stress drop standard
eviation (STD) as 0.25 in log10 scale, and not scaled with magni-
ude (Figs 5 a and S2 ). It is found that when the input average stress
rop is 1.8 and 3.3 MPa, the SNSS method results in a maximum
tress drop underestimation of 3 per cent for M w 1, and nearly no
nderestimation for M w 4; for a larger input average stress drop at
 MPa, the underestimation increases to ∼10 per cent for M w 1 and
 per cent for M w 4. As a comparison, the DESC method almost
reserve the input values for 1.8, 3.3 and 8 MPa input, though a
light overestimation of ∼1 per cent due to the presence of noise in
he spectra in the case with 8 MPa input. For all three input values,
hen the SNSS method is applied we obtain slight artificial magni-

ude dependence of stress drops, while there is no obvious scaling
resent from the DESC method. 

Similar to the test in Section 3.1 , we increase the log10 stress drop
TD from 0.25 to 0.5 so the stacked spectra will be further biased,
ee Fig. 5 b (1, 2) and Fig. S2 . the STD here is a reference based on the
tress drop measurements in Zhang et al. ( 2022 ), and in some other
tudies the STD can be larger (e.g. Shearer et al. 2006 ; Allmann &
hearer 2007 ). In the SNSS results, we observe obviously enlarged
nderestimation for all three input average stress drops. For the 1.8,
.3 and 8 MPa cases, the underestimation becomes 13, 16 and 25
er cent for M w1 , respecti vel y. Even the largest earthquakes at M w 4
lso suffer from more underestimation up to 10 per cent like in the
.3 and 8 MPa cases. The underestimation increases as the average
nput stress drop increases, as a larger stress drop means that smaller
arthquakes will have higher corner frequencies approaching or
xceeding the upper limit for spectral fitting. Ho wever , similar to
he STD = 0.25 case, the DESC method is still capable of recovering
he input stress drops. 
Lastly, considering the debates on earthquake self-similarity, we
et up the stress drops not only based on normal distrib ution, b ut also
n different input scaling relationship (scaling and non-scaling) to
imulate two possible interpretations on earthquake self-similarity,
ee Fig. 5 b (2, 3) and Fig. S2 . All the parameters are inherited
rom the two test sets above. For the SNSS method, applying an
nput scaling relationship only result in minimal increase in the
tress drop underestimation at all moment magnitudes, which is
ncomparable to that by increasing the STD. On the contrary, the
ecovery ability of the DESC method is still not visibl y af fected b y
his. 

In a series of tests above, we observe that the DESC method can
early recover the input stress drops, while the SNSS method al wa ys
roduce both underestimation and artificial scaling. The test result
s consistent with the results in Section 3.1 in terms of the influence
n stacking, and further proves that the proposed DESC method can
void the source parameter underestimation and artificial magnitude
caling problems in a synthetic en vironment. Ho wever , it is still
mportant to note that the DESC method suffers from relati vel y
igher uncertainties; stacking can naturally suppress the noise in the
pectra, while in DESC the noise is less smoothed. The mathematics
ele v ant to the synthetic tests above is demonstrated in the Appendix
or the readers’ convenience. 

.4 Algorithm time complexity, DESC versus SNSS 

o demonstrate the performance of the DESC method, in Fig. S1
e compare its time complexity with the SNSS method. In the test
ata set, we include 500 earthquakes in a spatially compact region,
hich should provide stable ECS solution according to a test by
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Figure 9. Stress drop statistics in the three subareas with colours matching the rectangles in Fig. 5 (a). (a, b) stress drop dependence on depth and magnitude, 
respecti vel y. (1–3) The stress drop in the three subareas. In each panel, the dots represent the individual stress drop values, and the squares with the corresponding 
colours represent the median values in magnitude bins with an interval of 0.5, and depth bins with an interval of 0.5 km. It is required that in each bin there are 
at least 50 data points. The horizontal dashed lines indicate the median stress drop levels in these cases. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1785/7513178 by H

ead Serials and Electronic R
esources D

ept user on 25 April 2024
Zhang et al. ( 2022 ). The DESC method returns the optimized ECS 

much faster than the SNSS method by 37.5 per cent on average 
after a full run of 500 iterations. Additionally, we test the stabil- 
ity of the DE algorithm on the stress drop set convergence. After 
fiv e repetitiv e trials, the randomly generated initial stress drops all 
converge to the same values after around 260 times of iteration. If 
the test stopped at the convergence point, the runtime of the DESC 

would be 62.5 per cent on average faster than the SNSS. The test 
above shows that the DESC is capable of solving for the ECS both 
ef ficientl y and accuratel y. Howe ver, the computational cost could 
rise rapidly if the maximum iteration time or random stress drop 
sets per iteration is not appropriately designed, or the number of 
ear thquakes par ticipating the iteration process is too large. Here 
using 500 earthquakes is a reasonable trial. 

4  DATA  A N D  R E S U LT S  

Next we shall apply our new methods to derive stress drops of 
earthquakes in the Weiyuan shale gas field, Sichuan, China. The 
shale gas reservoir in Rongxian–Weiyuan area is covered by the 
upper Ordovician Wufeng Formation to lower Silurian Longmaxi 
Shale Formation at depths of 1.5–4.5 km (Wu et al. 2019 ). The 
Wufeng–Longmaxi formation has an average thickness of 35–40 
m, which is a good target for shale gas productivity. The shale 
depths vary from the nor thwester n to the southeastern, with gradual 
increment approximately from 2 to 4 km (Ma et al. 2020 ). Three 
major production zones, Zi-201, Wei-202 and Wei-204, include 
multiple operation wells aligned with shale depth contours and 
Weiyuan anticline trace, and they are thought to be mostly under 
active operation in the studied time range according to the increasing 
seismicity. 

In the stress drop analysis, we include a total of 11 844 earth- 
quakes during Febr uar y 2019 and August 2020 that are detected 
and archived by the Sichuan Earthquake Administration (SEA). 
These earthquakes were recorded b y totall y 29 permanent stations 
in the local surface seismic network (ID: SC) equipped with short- 
period seismometers at a sampling rate of 100 Hz. The direct P 

waveforms on the 29 stations are converted to frequency-domain 
observed spectra using a multitaper based method (MATLAB func- 
tion: ‘pmtm.m’) as the input of the analysis. The time window of 
spectrum computation is the P –S arri v al dif ference after the P ar- 
ri v al, covering the majority of the P -wave energy. We only use direct 
P waveforms in the analysis because the S waves usually couple with 
P wave or coda, potentially leading to biased frequency contents. 
Due to the limitation of instrument response, we exclude any fre- 
quency contents outside of 1–40 Hz range. To mitigate the influence 
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Figure 10. A one-to-one comparison of individual ear thquake cor ner fre- 
quencies obtained using the DESC ( x -axis) and SNSS ( y -axis) methods 
(grey circles). The red dashed line indicates where the two methods share 
the same outputs, and the green dashed line describes the linear regression 
of the comparison on log10 scale. 

Figure 11. Corner frequenc y v ersus moment magnitude for all the earth- 
quakes (grey circles). The red squares represent the median corner frequen- 
cies in different moment magnitude bins with an interval of 0.1 and a size 
of 0.1. The error bar represents the range of the corner frequencies between 
the first quartile and the third quartile in each magnitude bin. The horizontal 
dashed lines denote three corner frequency levels: at Nyquist (50 Hz), at the 
upper bound of the frequency band for spectral fitting (40 Hz) and at 80 per 
cent of the upper bound (32 Hz, the resolution limit as discussed in Chen & 

Abercrombie 2020 ), respecti vel y. 

Figure 12. Magnitude dependence of stress drops in Rongxian area. (a and 
b) The stress drop magnitude dependence obtained using the DESC (a, red 
circles) and SNSS (b, blue circles) methods. The horizontal dashed lines 
are the median values of stress drops from each method, and the red and 
blue squares show the median values in magnitude bins with an increment 
of 0.2. The red and blue squares are the same in (a) and (b) for comparison 
between the two methods. (c) Normalized median values in (a) and (b) in 
the same magnitude bins by the median stress drops for M w > 2 earthquakes 
(red and blue solid squares). The white squares indicate the ratios between 
the normalized stress drops in these magnitude bins as a comparison of the 
magnitude dependence from the two methods, which show that the stress 
drop differences between the two methods change with magnitude. 
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rom noise, we apply strict criteria to screen out noisy waveforms:
ased on the noise spectrum calculated in the 1-s window before the
 arri v al, for each spectrum of an earthquake-station pair, 90 per
ent of the frequency sampling points between 1 and 40 Hz shall
ave the SNR larger than 2, meanwhile 75 per cent of the frequency
ampling points in the same frequency range shall have SNR larger
han 3. The earthquakes above 1 km depth are not included as the
arthquake energy in the sediment is attenuated dif ferentl y than
hat at deeper depths. After the screening process, we obtain 94 744
eliable P -wave spectra that guarantee each earthquake among the
1 844 are recorded by at least four stations among the total 29.
he local magnitudes of the earthquakes range from M L 0–5.6 with
 median of 1.3 according to the local earthquake catalogue pro-
uced by Sichuan Earthquake Administration, China. The moment
agnitudes are important information required in the stress drop

nalysis; we use the published moment magnitudes in Yi et al.
 2020 ) for the M L > 4 earthquakes, but the smaller earthquakes do
ot hold moment magnitude records in the current catalogue. To
btain the moment magnitudes of these earthquakes, we follow the
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Figure 13. An overall comparison of stress drop magnitude dependence among four different studies as mentioned in the figure legend in different colours and 
markers. 

Figure 14. Stress drop magnitude dependence in different depth bins in the Weiyuan area. The percentage in the brackets in the figure legend indicates the 
number of earthquakes in each depth bin among all. The curves show the median value changes over magnitude with an increment of 0.2. 
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w orkflo w in Zhang et al. ( 2022 ) to perform magnitude calibration 
and establish a conversion relationship from local magnitude to mo- 
ment magnitude utilizing the 0.6–1.0 Hz average amplitude in the 
low-frequency plateau of the event spectra. 

In this analysis, we carefully consider the data organization and 
parameter selection to mitigate the influence on the accuracy of the 
stress drops from different aspects. To correct for the attenuation 
heterogeneity of the underground medium mentioned in Section 
2.1 , we find 500 random base earthquakes in the data set across 
the whole studied area, and for each base earthquake, we select 
a set of 500 closest earthquakes to it as a subset of the data set 
and perform the DESC method within this base earthquake set, 
similar to the practice by Allmann & Shearer ( 2007 ). A certain 
earthquake may be included in multiple base event subsets, and 
we use the median stress drop of all its measurements from dif- 
ferent subsets as its representative. In each subset, to describe the 
compactness of the earthquakes (aka. consistent attenuation in the 
area) we define the horizontal range as the square root of the sum- 
mation of the distance between the 10th and the 90th quantiles 
of the longitudes and latitudes in km, respecti vel y, and the depth 
range as the distance between the 10th and the 90th quantiles of the 
depths. For the 500 subsets, we find there are approximately 83 per 
cent of them hold horizontal ranges lower than 10 km, and 97 per 
cent hold depth ranges lower than 1 km, and both the ranges are 
tested valid that ensure consistent attenuation in the area (Zhang 
et al. 2022 ). This guarantees that the ECS for event spectra cor- 
rection is spatiall y v arying and accounts for the local attenuation 
le vel across dif ferent subsets, and the DESC method is applied in 
a compact area spanned by each subset so the assumption in Step 
4 is valid. The magnitude bin size in the DESC w orkflo w is set to 
0.2. After obtaining an ECS in each base earthquake set, we fit the 
ECS-corrected source spectra to Brune-shape spectra and solve for 
the corner frequency within 1–40 Hz range. It is important to use 
higher upper bound in spectral fitting, because a narrower frequency 
band could result in underestimation of corner frequencies. Chen 
& Abercrombie ( 2020 ) performed a synthetic test revealing that the 
SNSS-similar approaches can recover the largest corner frequen- 
cies within approximately 80 per cent of the frequency upper bound 
before systematic underestimation happens. This implies that for 
a maximum of 40 Hz upper bound, an unbiased corner frequency 
cannot exceed around 32 Hz. Considering this factor, the magnitude 
range we use in the DESC w orkflo w is set to at least M w 0.9, and 
at most M w 3.0 to avoid large-magnitude bins that contain too few 

earthquakes. 
Following the setup of analysis discussed above, we perform the 

source parameter inversion for the 11 844 earthquakes in the whole 

art/ggae014_f13.eps
art/ggae014_f14.eps


An improved method to determine earthquake stress drop 1797 

Figure 15. A zoom-in statistics figure near the September 2019 M L 5 Weiyuan main shock. (a) A map view of the seismicity in the Sep 2019 M L 5 vicinity. 
The rectangles and squares represent the 152 earthquakes before and after the main shock in the time range from early-2019 to mid-2020, coloured by their 
locations (cyan and blue: before and after the main shock near the injection well, pink and red: before and after the main shock on the unmapped fault). The 
grey open circles show the background seismicity in this area in the whole data set. The beach ball pinpoints the main shock and describes its focal mechanism. 
The black traces mark the injection well W204H37 associated with the seismicity near it (cyan and blue markers), and the grey traces are nearby injection 
wells that could be coupled with some of the background injection-related seismicity. (b) A along-strike cross-section view of the same seismicity in (a). The 
grey thick line at 3 km depth marks the approximate fracturing depth of W204H37 well. The black dashed line is a delineation of the unmapped pre-existing 
fault where the main shock occurred. The black star marks the location of the main shock. The black reversed triangle is the surface location of the W204H37 
well. (c) Temporal variation of the stress drops with the same marker and colouring schemes as those in (a) and (b). The horizontal solid lines show the median 
values of the two groups of earthquakes (b lue: near -injection earthquakes, including the cyan and blue markers; red: on-fault earthquakes, including the pink 
and red markers). The interval framed by the vertical dashed grey lines and a horizontal solid grey line indicates the W204H37 well operation period. (d and 
e) Depth variation of the moment magnitudes (d) and stress drops (e) of the 152 earthquakes using the same marker and colouring schemes as previous. The 
horizontal dash lines mark the median moment magnitudes and median stress drops in the two groups, similar to those in (c). 
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WZ area (geometry setup in Fig. 6 a, and latitude-depth distribution
n Fig. 6 b). The maximum and minimum moment magnitudes are
easured as 5.04 and −0.02, respecti vel y, with a median of 1.30.
he two magnitude scales generally follow the linear regression
e

Fig. 7 ): 

M w = 0 . 8826 M L + 0 . 1702 (4) 

This is found steeper than observed in Yi et al. ( 2020 ) using large
arthquakes. 
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Next, we estimate the earthquake stress drops based on the ob- 
tained moment magnitudes and their event spectra (see spectra ex- 
amples in Fig. 6 c). The stress drops range from 0.14 to 41.94 MPa 
marked by the 1st and 99th percentile, which does not include some 
biased extremes outside this range due to limited corner frequency 
resolution. The median and geometric mean of stress drops are 2.29 
and 2.32 MP a, respectiv ely; the logarithmic standard deviation, de- 
scribing the scattering of stress drops usually observed spanning a 
range of 3 orders of magnitude, is estimated to be 0.50 after ex- 
cluding the earthquakes with outlier stress drop values. It should 
be mentioned that among these earthquakes, approximately 3.4 per 
cent are found to have unresolvable corner frequencies exceeding 
the upper limit of the instrument, meaning their stress drops should 
be biased; we manually set their corner frequencies to the Nyquist 
frequency (50 Hz) following the practice of Allman & Shearer 
( 2007 ) and Zhang et al. ( 2022 ). Fig. 8 (a) shows the strong hetero- 
geneity of stress drops across the studied area. In Fig. 8 (b), the red 
curve showing the fitting of log10 stress drop histogram to Gaussian 
distribution indicates the estimated stress drops are nearly normally 
distributed. Considering the heterogeneous nature of tectonic en- 
vironments across the RWZ area, we separate the whole studied 
area into three roughly designed rectangular subareas (Fig. 8 a): I. 
Rongxian Area (red rectangle), II. Weiyuan Area (green rectangle) 
and III. Zigong Area (blue rectangle). 

I. The earthquakes in Rongxian area span a magnitude range of M w 

0.28–4.59, of which five earthquakes have M w larger 4. Totally 99.0 
per cent of the earthquakes are located shallower than 5 km depth. 
The median of the stress drops is 2.77 MPa, slightly higher than the 
overall stress drop median of the whole RWZ area. Higher stress 
drops are found in the injection area on the east of Molin Fault. In 
this area, multiple injection wells were being operated in the studied 
time range, including one well near the Febr uar y 2019 M L 4.9 main 
shock epicentre. 

The stress drops in Rongxian area are found nearly independent 
to their depths after applying a depth-dependent rupture velocity 
model in the calculation (Figs 9 and A1). As for the moment mag- 
nitude, there is apparently weak dependence for earthquakes smaller 
than M w 2, while those with M w > 2 present visible dependence 
relationship (Figs 9 and B1). Higher stress drops are found near the 
September 2019 M L 5 main shock, while the stress drops are found 
systematically lower to the north. 

II. The magnitudes of the earthquakes in Weiyuan area range from 

M w −0.02 to M w 5.04, while there are more earthquakes found near 
and shallower than 2 km depth than those in Rongxian area (Figs 9 
and B2). The median stress drop is estimated to be 1.06 MPa, around 
61.7 per cent lower than that in Rongxian area, and 53.7 per cent 
lower than the overall median. 

In Weiyuan area, the stress drops are observed significantly in- 
creasing in the depth range of 2–4 km, but their depth dependence 
disappears below 4 km (Figs 9 and A2). The observation here con- 
tradicts with a collection of studies in Abercrombie et al. ( 2021 ) 
showing almost non-depth-dependent patterns after applying the 
aforementioned spatial attenuation correction and shear wave ve- 
locity. Meanwhile, unlike that in Rongxian area, we find consistent 
magnitude dependence at lower and higher magnitudes. This is 
accompanied by 1.5 per cent of unresolvable corner frequencies, 
which should not cast large impact on the magnitude dependence. 

III. Zigong area has the smallest population of earthquakes in the 
RWZ area (7.4 per cent of the total); meanwhile, they are narrowly 
distributed in terms of depth (around 3–6 km) and moment magni- 
tude (mostly M w 1.0–2.2; Figs 9 , A3 and B3). Therefore, the stress 
drop statistics may be unreliable in this area. The median stress drop 
is the highest among all three areas (4.55 MPa), and it is unknown 
whether the difference in stress drops is due to the limited data. 

5  D I S C U S S I O N S  

5.1 DESC versus SNSS on Weiyuan shale gas field 

earthquakes 

The synthetic tests in Section 3 have revealed that the DESC method 
outperforms the SNSS method in source parameter recovery; how- 
ev er, the comple xity of the earthquake source processes and un- 
derground media, and the simple source model assumption make it 
unclear whether other factors could alter the test findings. To inves- 
tigate whether the mitigation of source parameter estimation using 
the DESC method can be mapped to field data, we apply the SNSS 

method on the Weiyuan shale gas field data set and compare the 
results of corner frequencies and stress drops with those obtained 
above. We implement the same set of parameters on the SNSS trial, 
and the same data processing w orkflo w to ensure no other factors 
bias the comparison. 

We first compare the individual corner frequency estimates ob- 
tained using the two methods (Fig. 10 ). The corner frequencies 
from the SNSS method are systematically lower than those from 

the DESC method; the average corner frequency ratio between 
DESC and SNSS increase from about 1.1 at < 5 Hz to 1.9 when 
the corner frequencies approach the upper bound of spectral fitting 
(40 Hz), which can be described with a log10 linear regression of 
f c , SNSS = 1 . 236 f 0 . 7749 

c , DESC . The comparison of corner frequencies near 
the 40 Hz upper bound may be influenced by the limited frequency 
band, but such influence could be minimal because Fig. 11 shows 
that the median corner frequency of an M w 1.5 earthquake should be 
approximately 15.39 Hz obtained using the DESC method, which 
is 38.5 per cent of the upper bound; Chen & Abercrombie ( 2020 ) 
discussed that when averaged from multiple stations, corner fre- 
quencies lower than 40–80 per cent of the frequency upper bound 
are more likely to be resolvable (i.e. within 25 per cent of true 
corner frequency), while higher corner frequencies tend to be sys- 
tematically underestimated. The result in Fig. 10 indicates that the 
difference of the two methods enlarges with higher corner frequen- 
cies, which agrees with the discussion in Chen & Abercrombie 
( 2020 ) and Zhang et al. ( 2022 ). Fur ther more, a similar pattern was 
observed by Shearer et al. ( 2019 ) who found that the spectral ratio 
method results in larger corner frequency estimates than a previous 
stacking-based approach when the Brune’s model is applied, and the 
difference is enlarged for earthquakes with higher corner frequen- 
cies (Fig. 8 in Shearer et al. 2019 ). This indicates that the DESC 

approach could produce similar source parameter estimates to those 
by the spectral ratio method, while the previous stacking-based ap- 
proach could lead to systematic source parameter underestimation. 

The enlarged corner frequency ratio between the DESC and SNSS 

methods at higher corner frequencies could suggest relati vel y larger 
stress drop underestimation for lower magnitude earthquakes. To vi- 
sualize this, we compare the magnitude dependence of individual 
stress drops obtained using the two methods in the Rongxian area 
(Fig. 12 ). Based on the magnitude dependence measurements using 
the DESC method in Fig. 9 , we observ e e xtra magnitude scaling of 
the SNSS stress drops over the DESC stress drops (Fig. 12 c): the 
ratio of the normalized median stress drops between the SNSS and 



An improved method to determine earthquake stress drop 1799 

D
0  

p  

i  

p  

1
1  

i  

o
 

f  

m  

D  

i  

s  

a  

t  

a  

i  

o  

a  

r  

u
 

r  

t  

S  

t  

k  

f  

i  

t  

r  

f  

d  

b  

t  

r  

o  

c  

i  

i  

w  

f  

B  

l  

S  

t  

e  

c  

o  

c  

p  

m

5
m

O  

W  

o  

r  

2  

t  

s  

M  

t  

s  

e  

b  

e  

a  

l  

f  

m  

i  

d  

(  

e  

t  

m  

b  

s  

s  

a  

s  

S  

e  

a  

a  

t  

a  

o
 

t  

r  

i  

(  

b  

a  

c  

i
2  

p  

e  

t  

e  

g  

t  

q  

t  

d  

a  

n  

p
 

e  

d  

t  

t  

m  

W  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/3/1785/7513178 by H

ead Serials and Electronic R
esources D

ept user on 25 April 2024
ESC ones increases with earthquake moment magnitude from M w 

.6 to 2.0, and the e xcessiv e underestimation can be as high as 31.3
er cent at M w 1.0; the discrepancy in magnitude scaling becomes
gnorable for M w > 2.2. The case with STD = 0.5, k = 0.5 and in-
ut stress drop = 3.3 MPa in the synthetic test shows approximately
0 per cent of e xcessiv e underestimation of the SNSS method at M w 

.0, which is about 21.3 per cent lower than the realistic extent. This
ndicates that the stacking issue still ine vitabl y af fects the e v aluation
f earthquake self-similarity, albeit not the dominant factor. 

Figs 12 (a) and (b) shows that the absolute stress drops derived
rom both methods are remarkabl y dif ferent. We obtain an overall
edian stress drop of 0.94 MPa in the Rongxian area, while the
ESC method as mentioned before outputs a median of 2.77 MPa

n the same area, which is nearly three times of difference; more
pecificall y, the dif ference v aries at dif ferent magnitudes—there is
 71 and 60 per cent underestimation at M w 1.0 and M w 2.0, respec-
i vel y from the SNSS method rele v ant to the DESC stress drops. As
 comparison, the case in the synthetic test 3.2 with the closest setup
s STD = 0.5, k = 0.5 and input stress drop = 3.3 MPa, and we
btain approximately 19 and 14 per cent underestimation at M w 1.0
nd M w 2.0, respecti vel y. Apparentl y, the extent of underestimation
eflected from the tests are 52 and 46 per cent lower than the realistic
nderestimation at the two moment magnitudes. 

The comparison of the two methods dif fers significantl y between
ealistic data sets and synthetic data sets, which may infer that ex-
ra factors also cast influence on the realistic stress drop estimates.
ince the two methods implement the same spectral fitting approach

o obtain the individual corner frequencies for the earthquakes, the
ey leading to the discrepancy of synthetic data set stress drops
rom the two methods is the different ways the ECS is generated
n the two methods. The magnified e xcessiv e underestimation from
he SNSS method in the realistic data set could suggest that the cor-
esponding ECS may have to correct further biased stacked spectra
rom other factors, such as the residual part of the event spectra pro-
uced in the spectral decomposition stage. The residual part cannot
e directly quantified, therefore it is hard to realize its simulation in
he synthetic tests. This factor should not strongly impact the DESC
esults, as it does not involve direct stacking of event spectra. An-
ther possible factor is the source model assumption—though the
ircular crack model has been widely applied, due to the limitations
n the obser vator y means it is uncertain how much difference there
s between the popular model and the reality; it is hard to explain
h y Brune’ s model is more suitable than other empirical models

or spectral fitting here as past studies have shown that Brune’s and
oatwright’s model (Boatwright 1980 ) result in different stress drop

evels (Huang et al. 2016 ; Ruhl et al. 2017 ; Demuth et al. 2019 ;
hearer et al. 2019 ), though Chen & Abercrombie ( 2020 ) showed

hat Brune’s model with a smoother corner is more suitable for av-
raged source spectra, which does not apply to the DESC method
ase; therefore it is unpredictable whether the significant difference
f magnitude dependence in the synthetic and realistic data set is
aused by the source model assumptions. Provided these, it is still
ersuasive that the stress drop measurements from the proposed
ethod are less underestimated compared to before. 

.2 Stress drop characteristics and earthquake trig g ering 
echanisms 

ur stress drop estimates of induced earthquakes in the whole
eiyuan shale gas field area generally fall into a similar range to that

f the induced earthquakes in Oklahoma (Wu et al. 2018 ; Fig. 13 ,
ed). The median stress drops of the two different area are 2.29 and
.07 MPa, and both studies find significant spatial variability across
heir corresponding studied area. Both studies also report larger
tress drops for M w > 2–2.5 earthquakes than smaller ones below
 w 2–2.5 on average. Unlike the induced earthquakes in Oklahoma,

he overall USA crustal earthquakes show relati vel y lower median
tress drops (approximately 0.71 MPa) than those of our induced
arthquakes (Boyd et al. 2017 ; Fig. 13 , yellow). This can possibly
e ascribed to the limited capability of resolving low-magnitude
ar thquake cor ner frequencies, or the variety of focal mechanisms
cross the Nor ther n America continent. Boyd et al. ( 2017 ) reported
ow stress drops of Central USA with majorly normal to strike-slip
aults, intermediate stress drops of Western USA with a mixture of
ultiple mechanisms, and high stress drops of Eastern USA which

s thrust-fault-dominant. As the Weiyuan shale-gas field is thrust-
ominant as shown by Yi et al. ( 2020 ), our stress drops on average
2.32 MPa) should be seen as comparable to the estimates in East-
rn USA in Boyd et al. ( 2017 ) (approximately 2.99 MPa) due to
he similar source mechanisms. The stress drop variability across

echanisms is further confirmed by Huang et al. ( 2017 ) (Fig. 13 ,
lue). The reported stress drops are overall higher than any of the list
tudies, but these are relati vel y larger earthquakes and have similar
tress drop estimates as the large earthquakes in Wu et al. ( 2018 )
nd our results. It should be noted that the relationship between
tress drops and focal mechanisms are challenged by Allmann &
hearer ( 2009 ) and Oth ( 2013 ) who found strike-slip-dominant ar-
as tend to yield higher stress drops than thrust-dominant areas,
nd one cannot either ignore the discrepancies of parameters used
mong studies, for example rupture velocity assumption; ho wever ,
he comparison among different studies still show the stress drops
cross tectonic environment, focal mechanisms and different meth-
ds do not systematically differ. 

The stress drop consistency among studies does not explain why
he stress drop estimates change 7–10 times over depth in Weiyuan
egion (Figs 9 and A2 ). We break the Weiyuan area earthquakes
nto different depth bins: 2–3 km, 3–4 km, 4–5 km and 5–7 km
Fig. 14 ), and observe a large gap of stress drops at 3 km in terms of
oth the absolute values and magnitude dependence. The Weiyuan
rea is dominated by earthquakes shallower than 3 km (over 60 per
ent). At the depth range of 2–3 km, the stress drops are found scal-
ng with moment magnitudes significantly between M w 0.4 and M w 

.8, with higher-magnitude earthquakes (near M w 3) having com-
arable stress drops to deeper earthquakes, and lower-magnitude
arthquakes holding obviously lower values. For earthquakes deeper
han 3 km, the magnitude dependence of stress drops is nearly non-
 xistent ov erall across the entire magnitude range. This could sug-
est that the 3 km depth could be a boundary of different earthquake
riggering processes. It is reasonable to suspect that shallower earth-
uakes are more directly engaged with fracturing activities provided
he active operations at 3–3.5 km depth in this area (Ma et al. 2020 )
uring the studied time periods, as Goertz-Allmann et al . ( 2011 )
nd Igonin et al. ( 2023 ) reported that the stress drops of seismicity
ear injection spots are lower than the ambient ones coupled with
re-existing faults. 

We zoom into 152 earthquakes near the September 2019 M 5
arthquake in the Weiyuan area from early 2019 to mid 2020,
uring which an injection well W204H37 is under operation near
he hypocentre of the M 5 earthquake (Fig. 15 a). Fig. 15 shows
wo groups of earthquakes: (1) the shallow earthquakes occurred
ainly 3–4 months before the M 5 main shock coinciding with the
204H37 operation time, thus are more injection-coupled; (2) the

eeper earthquakes on the unmapped fault that hosted the M 5 main

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae014#supplementary-data
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shock and most on-fault earthquakes occurred after the main shock, 
thus more main shock-coupled. There are also minor earthquakes 
occurred before the main shock on the fault, and after the main 
shock near the injection (Figs 15 b and c). The median stress drop of 
the injection-coupled earthquakes and main shock-coupled earth- 
quakes are about 0.50 and 4.51 MPa, denoting an approximately 
9.02 times of difference generally agreeing with that in Figs 9 and 
A2 . Fig. 15 (b) show that the two groups of earthquakes are dominant 
in the depth ranges of above-3.5 km and below-3.5 km, respecti vel y; 
the difference of stress drop level in the two depth ranges is unlikely 
due to natural depth dependence, as we do not observe significant 
depth variation of stress drops below 3 km in Weiyuan area (Figs 9 , 
A2 and 15 d, (1)), or across the whole depth range in Rongxian area. 
Magnitude dependence may also unlikely cause the difference, as 
we find barely different moment magnitudes in the two groups 
(medians of 1.11 and 1.22, respecti vel y); if we ascribe the large dis- 
crepancy in stress drop level to magnitude dependence in the area, 
then according to Fig. 9 (B2), the median stress drops at M w 1.11 
and M w 1.22 are 2.30 and 2.12 MPa resulting in a difference of only 
0.92 times, which cannot account for the 9.02/0.92 = 9.80 times of 
dif ference. The dif ferent stress drops between the two groups could 
instead originate from the discrepancy in pore pressure conditions 
near and far from the injection well (Zoback 2010 ; Goertz-Allmann 
et al . 2011 ). The pore pressure near the injection well can be as 
high as nearly 100 MPa in this area (Yi et al. 2020 ), while the 
silence of seismicity in time and space between the W204H37 oper- 
ation zone and the 2019 M 5 aftershocks may be a result of lacking 
fluid migration channel from the injection zone above 3 km into 
the pre-existing fault, or the fault being not as critical to be acti- 
v ated b y possible fluid migration (Yu et al. 2020 ). Therefore, it is 
plausible to conclude that different triggering mechanisms (direct 
injection-induced earthquakes VS. possible aftershocks) could have 
different stress drops, though unfor tunately fur ther analysis is lim- 
ited by confidential injection data that is not available for public 
access. It should also be noted that no assertions can be made that 
the different stress drops in the two groups are unrelated to natu- 
ral depth dependence and magnitude dependence of stress drops, 
because we do not observe similar temporal and special separation 
in other subareas. We expect to answer the question above in the 
future with the help of a latest dense array deployed in the studied 
region. 

6  C O N C LU S I O N S  

We propose a new method that improves the earthquake stress drop 
w orkflo w, and apply the method to solving for the induced earth- 
quake source parameters in the Weiyuan Shale Gas Field in Sichuan, 
China. It is observed that: 

1. The proposed method based on global optimization is capable of 
mitigating the source parameter underestimation compared to tra- 
ditional methods relying on stacking of earthquake source spectra. 
2. The stress drops show strong heterogeneity over space in the 
studied region, and are found nearly self-similar at low magnitudes 
and non-self-similar at high magnitudes. The stress drops are depth- 
dependent in the Weiyuan area rather than in the Rongxian area. 
3. The overall stress drop level in Weiyuan Shale Gas Field exhibits 
no systematic difference than that in other tectonic environment; 
Ho wever , stress drop discrepancy is still found for possibly differ- 
ent underlying mechanisms associated with different pore pressure 

levels. 
S U P P O RT I N G  I N F O R M AT I O N  

Supplementary data are available at GJI online. 
Figure S1. Left-hand panel: statistics of the DESC stress drop 

convergence in different magnitude bins in five different trials with 
the same data set. Trials are differentiated using different colours. 
Right: A comparison of the time complexity (in seconds) of the 
DESC and SNSS methods. Blue curve shows the runtimes of 20 
trials using the SNSS method, the red solid curve shows the runtimes 
of 20 trials of the DESC method allowing 500 iterations, and the 
red dashed curve shows the runtimes of 20 trials using the DESC 

method stopped after 260 iterations where the convergence becomes 
relati vel y stable. 

Figure S2. A full version of Fig. 5 showing the results of all the 
test cases with the same markers. 

Please note: Oxford University Press is not responsible for the 
content or functionality of any supporting materials supplied by 
the authors. Any queries (other than missing material) should be 
directed to the corresponding author for the paper. 
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E  S Y N T H E T I C  T E S T S  

e-shape spectra is distorted and deviates from Brune shape causing biased 
spect of mathematics. The biases include the underestimation of absolute 
he higher underestimation with increased stress drop standard deviation 

for spectral stacking. The conclusion can be easily extended to complex 
r magnitudes M w 1 and M w 2 , and their corner frequencies are f c 1 and f c 2 , 
ference spectrum with a moment of M w and a corner frequency of f c . The 
lows below: 

(A1) 

also stress drops) of the two earthquakes are geometrically symmetric to 
he log10 spectra of the two earthquakes S 1 ( f ) and S 2 ( f ) and the reference 

(A2) 

 frequency amplitudes of the log10 spectra, which are proportional the 
nce. Therefore, we have C 0 = C 1 + C 2 . The stacked spectrum of the two 

f/ f c ) 
2 ), (A3) 

y f ci standing for the inverted corner frequency of the stacked spectrum, 

(A4) 

(A5) 

n the scattering of stress drops becomes more significant. 
 earthquake is more significantly underestimated than a larger earthquake. 

0 R 

( f ) (A6) 

me value of the former we just need to compare the numerator and the 

 

− k 2 − 1 

k 2 

)
( f/ f c ) 

2 + 

(
1 

m 

4 
− 1 

)
( f/ f c ) 

4 (A7) 

 non-zero, let p = m 

2 , we obtain: 

(A8) 

(A9) 

orner frequencies, the inver ted cor ner frequency of the stacked spectrum 
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A P P E N D I X :  M A  T H E M A  T I C S  B E H I N D  T H

It has been shown in Section 3.1 that a stacked spectrum from Brun
source parameter estimation. This can be further proved from the a
values, the increased underestimation for lower magnitudes, and t
(meaning the spectra used for stacking less resemble each other). 

We consider a base case, where there are only two earthquakes 
cases with multiple earthquakes. The two earthquakes have simila
respecti vel y. The stacked spectrum of the two is compared with a re
relationship between the two spectra and the reference spectrum fol{

M w = 

( M w 1 + M w 2 ) / 2 , 
f c = 

√ 

f c1 f c2 , f c1 = k f c , f c2 = 

( 1 /k ) f c , k > 1 . 

The second equation of eq. (A1 ) means the corner frequencies (
the reference corner frequency and follow Gaussian distribution. T
spectrum S 0 ( f ) in log10 scale can be expressed below: ⎧ ⎨ 

⎩ 

S 1 ( f ) = C 1 − log 10 

(
1 + 

( f/ f c1 ) 
2 )

S 2 ( f ) = C 2 − log 10 

(
1 + 

( f/ f c2 ) 
2 )

S 0 ( f ) = C 0 − log 10 

(
1 + 

( f/ f c ) 
2 ), 

where f represents frequency samples, and C 0,1,2 represent the low
log10 moments corresponding to the two earthquakes and the refere
earthquakes S ( f ) can be represented as: 

S ( f ) = 

( S 1 ( f ) + S 2 ( f ) ) / 2 = C 0 − log 10 

√ (
1 + 

( f/k f c ) 
2 ) (

1 + 

( k

S ( f ) is compared to Brune spectrum to estimate a corner frequenc
which will be compared to f c . We define m as the ratio, where: 

m = f ci / f c 

The fitting of S ( f ) to Brune shape is defined as S i ( f ): 

S i ( f ) = C 0 − log 10 

(
1 + 

( f/ f ci ) 
2 ) = C 0 − log 10 

(
1 + 

( f/m f c ) 
2 ) . 

We shall prove that: 

(1) m < 1 , meaning the corner frequency is underestimated. 
(2) m decreases with k , meaning the underestimation is larger whe
(3) m decreases with f c , meaning the corner frequency of a smaller

1 Proof of underestimation 

Comparing S ( f ) and S i ( f ), we obtain: 

S ( f ) − S i ( f ) = 0 . 5 log 10 

(
1 + 

(
f 

m f c 

)2 
)

(
1 + 

(
f 

k f c 

)2 
) (

1 + 

(
k f 
f c 

)2 
) = : 0 . 5 log 1

S ( f )–S i ( f ) has the same monotonicity as R ( f ), to obtain the extre
denominator of R ( f ), which we define as D ( f ): 

D 

( f ) = 

(
1 + 

( f/m f c ) 
2 )2 − (

1 + 

( f/k f c ) 
2 ) (

1 + 

( k f/ f c ) 
2 ) = 

(
2 

m 

2

D ( f ) should be zero; if the coefficient of the two terms in D ( f ) are

( f/ f c ) 
2 = 

(
k 2 + 

1 
k 2 

)
p 2 − 2 p 

1 − p 2 
> 0 . 

From the equation above, we have: 

2 

k 2 + 1 /k 2 
< p < 1 , 

√ 

2 

k 2 + 1 /k 2 
< m < 1 . 

This indicates that as long as the two earthquakes have different c
is al wa ys underestimated. 
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 (A7) : 

(A10) 

ot happen is when the two earthquakes have the same corner frequency. 
N he stacked earthquakes, the corner frequency of the stacked spectrum is 
a

2 ering 

L  scattering, we obtain: 

q
q 

. (A11) 

ith k for k > 1, a larger k results in a smaller m . This proves that when the 
s er frequency of the stacked spectrum becomes larger. 

3 ller earthquakes 

S ue to smaller fault dimensions. In eq. (A8 ), we can relate the reference 
c umerator and denominator of ( f / f c ) 2 : 

( (A12) 

g their derivatives to p . For A ( p ), given eq. ( A9 ) we have: 

(A13) 

 . For B ( p ), we have: 

(A14) 

ith p . Combining eqs (A13) and ( A14) , we can conclude that ( f / f c ) 2 

m ses with f c . Now w e ha v e prov ed that there is outstanding underestimation 
f

n 3.1 using mathematical deri v ation. In fact, the deri v ation above for two 
e ing every two earthquakes according to their average magnitude. 
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There is another case where D ( f ) has two zero coefficients in eq.{ 2 
p − k 2 − 1 

k 2 
= 0 

1 − p 2 = 0 
⇒ 

{
p = 1 , m = 1 

k = 1 . 

This means the only situation where the underestimation does n
ow we have proved that when the stress drops are scattered for t

l wa ys underestimated. 

 Proof of increased underestimation with stress drop scatt

et q = ( f / f c ) 2 which is constant when we only change the extent of

 = 

(
k 2 + 

1 

k 2 

)
p 2 − 2 p, m = 

√ 

p = 

√ √ √ √ 

q √ 

1 + q 
(
k 2 + 

1 
k 2 

+ q 
) −

In the equation above, since k 2 + 1/ k 2 monotonically increases w
cattering of stress drops increases, the underestimation of the corn

 Proof of lar g er corner fr equenc y under estimation f or sma

maller earthquakes on a verage ha ve higher corner frequencies d
orner frequency f c to the ratio m . We define A ( p ) and B ( p ) as the n

 f/ f c ) 
2 = 

(
k 2 + 

1 
k 2 

)
p 2 − 2 p 

1 − p 2 
= : 

A 

( p ) 

B 

( p ) 
. 

Now we inspect the monotonicity of A ( p ) and B ( p ) by calculatin

A 

′ ( p ) = 2 p 

(
k 2 + 

1 

k 2 

)
− 2 > 2 > 0 . 

This means A ( p ) (the numerator) monotonically increases with p

B 

′ ( p ) = −2 p < 0 . 

This means B ( p ) (the denominator) monotonically decreases w
onotonically increases with p and m , thus m monotonically decrea

or smaller earthquakes. 
We hav e e xplained the intrinsic reason of the test results in Sectio

arthquakes can be applied to multiple earthquakes cases by group
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