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ABSTRACT
The traditional distinction of magma-poor and magma-rich margins is challenged by the presence of significant late-stage rift-
related magmatism in certain margins, such as the South China Sea (SCS). We use numerical modelling to investigate the 
conditions and processes that lead to crustal melting and the formation of high-velocity lower crustal layers (HVLs) in such 
magma-intermediate margins. The models demonstrate that the preferential removal of the lithospheric mantle during rifting 
is crucial for crustal melting, as it allows the crust to receive sufficient heat from the upwelling asthenosphere. The extent and 
distribution of crustal melts are influenced by extension velocity and crustal rheology, and the models reveal a strong correlation 
between the presence of crustal melts and thin-crust domains (< 20 km thick). The study reveals a younger-oceanward trend in 
magmatism, attributed to the progressive exposure of the crust to the hot asthenosphere during rifting. Comparison of modelling 
results with seismic observations from the SCS margin suggests that both asthenospheric and crustal melts contribute to the 
formation of HVLs, with crustal melts estimated to constitute approximately 15%–30%. The results not only deepen our under-
standing of magmatic processes in magma-intermediate margins, but also provide quantitative evidence for the classification 
and interpretation of passive margins.

1   |   Introduction

Rifted continental margins are broadly classified as magma-
rich or magma-poor based on the extent of syn-rift magma-
tism (e.g., White and McKenzie  1989; Planke et  al.  2000; 
Geoffroy 2005; Pérez-Gussinyé et al. 2006, 2023; Reston 2009; 
Franke 2013). Magma-rich margins, often linked to large ig-
neous provinces or hotspots, exhibit extensive volcanism, 

thick HVLs, and seaward-dipping reflectors (SDRs) (Coffin 
and Eldholm  1994). Conversely, magma-poor margins, ex-
emplified by the Iberia-Newfoundland (e.g., Whitmarsh 
et  al.  2001; Péron-Pinvidic and Manatschal  2009; Pérez-
Gussinyé  2013; Brune et  al.  2017), Brazilian (e.g., Aslanian 
et  al.  2009; Contreras et  al.  2010), and Southern Australian 
margins (e.g., Bronner et al. 2011; Espurt et al. 2012), display 
rare syn-rift magmatic additions. However, some margins blur 
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these categorical distinctions. The SCS margin, traditionally 
considered magma-poor, exhibits significant late-stage syn-
rift magmatism, challenging traditional classifications (Brune 
et al. 2017; Larsen et al. 2018; Sun et al. 2019; Pérez-Gussinyé 
et al. 2023).

The prevailing classification of the SCS margin has evolved sig-
nificantly, transitioning from a traditional magma-poor to a more 
refined interpretation that recognises its intermediate character 
(Sun et  al.  2019; Ding et  al.  2020; Pérez-Gussinyé et  al.  2023). 
Earlier interpretations emphasised the apparent abundance 
of post-rift intrusions (e.g., Zhao et al. 2014; Ma et al. 2016; Fan 
et al. 2019; Song et al. 2017; Wang et al. 2018; Zhao, He, et al. 2018; 
Deng et al. 2019; Gao et al. 2019; Zeng et al. 2019; Sun et al. 2020), 
the absence of syn-rift magmatic products (e.g., Barckhausen 
and Roeser 2004; Li 2011; Franke 2013; Savva et al. 2014; Zhang 
et  al.  2016), the extensive distribution of highly extended crust, 
and the presence of deep mantle-penetrating detachment faults 
(Dong et al. 2014; Zhao, Ren, et al. 2018; Lei, Alves, et al. 2019, Lei 
et al. 2020; Deng et al. 2020; Fang et al. 2022; Ye et al. 2022), which 
collectively led to its classification as magma-poor. However, re-
cent advances in seismic imaging and deep-sea drilling expedi-
tions have provided compelling evidence for substantial, though 
localised and rapid, late-stage syn-rift magmatism in the SCS mar-
gin (Larsen et al. 2018; Sun et al. 2019; Ding et al. 2020; Zhang 
et al. 2021, 2023; Pérez-Gussinyé et al. 2023). The observed syn-
rift magmatism is predominantly focused beneath the continent-
ocean transition zone (COT) (Geoffroy 2005; Lei, Ren, et al. 2019; 
Sun et al. 2019; Tugend et al. 2020), in contrast to the more ex-
tensive magmatic activity typically found at magma-rich margins 
(Menzies et  al.  2002). Geochemical analyses of volcanic rocks 
from IODP drilling sites, exhibiting compositions similar to av-
erage continental crust, indicate a significant contribution of SCS 
continental crust to the syn-rift magma source (Zhang et al. 2018; 
Chen et al. 2022). The crustal contribution is further supported by 
the presence of 32.0 ± 1.4 Ma dacite tuff in industrial borehole LF1-
1-1 (Li and Liang 1994), indicative of crustal melting above a heat 
source during the Oligocene (Streckeisen 1979). Consequently, the 
SCS also differs from typical magma-rich margins in its thinner 
syn-rift magmatic products, which are likely derived from both as-
thenospheric and crustal melting, the lack of SDRs, and the more 
localised distribution of magmatism.

In summary, the late-stage syn-rift magmatism in the SCS is 
characterised by (1) its restriction to the thin-crust domain, (2) 
short-lived events, (3) a dual origin from both asthenospheric 
and crustal sources, and (4) being highly concentrated in the 
eastern region. These distinctive magmatic features support 
an intermediate classification for the SCS margin, distinguish-
ing it from the classic magma-rich or magma-poor categories. 
However, the current understanding of these characteristics is 
primarily based on seismic interpretations, and a quantitative 
framework for evaluating the driving and evolutionary pro-
cesses of the intermediate margin type remains to be developed.

Over the past decade, numerous numerical models of continental 
extension have been developed to investigate the evolution of rift-
ing (e.g., Huismans and Beaumont 2003; Bialas and Buck 2009; 
Crameri and Kaus 2010; Brune et al. 2016; Le Pourhiet et al. 2018; 
Tetreault and Buiter 2018; Duclaux et al. 2020; Liu et al. 2022). Most 
of these studies have focused on understanding how variations in 
physical parameters influence the development of structures and 
sedimentary architecture, while some have investigated the inter-
actions between magmatic and structural processes in magma-
rich environments (Lundin et al. 2018; Koptev et al. 2021; Lu and 
Huismans  2022). The generation of melting in magma-poor en-
vironments has been comparatively understudied, despite its sig-
nificance in understanding magmatic processes. However, recent 
research has addressed this topic. For instance, Ros et al. (2017) 
explored the role of the lower crust in regulating mantle-derived 
magmatic products during rifting.

The partial melting of crustal rocks is commonly attributed to 
crustal thickening or delamination of the lower crust in orogenic 
belts at depths exceeding 50 km, which leads to the fertile crust 
reaching its solidus temperature (e.g., Ma et al. 2015; Liu, Morgan, 
et al. 2018; Liu et al. 2023). However, the conditions under which 
magma-intermediate margins incorporate crustal magmatic ac-
tivity during late-stage rifting, and the contribution of such activ-
ity to HVLs, remain poorly understood. Furthermore, quantitative 
investigations into the distribution and age variations of crustal 
melts in magma-intermediate margins are lacking.

To address these unresolved questions, we employ numerical 2D 
forward modelling to simulate the late-stage syn-rift magmatic 
activities that characterise magma-intermediate margins, with a 
specific focus on the SCS margin. The objectives of this model-
ling approach are to explore the conditions that facilitate crustal 
magmatic activity and to investigate the influence of varying ex-
tension rates, lithospheric rheology, and geothermal conditions 
on the development of such magmatism. Furthermore, we will 
compare our modelling results with seismic profiles to estimate 
the relative contributions of asthenospheric and crustal melts 
to the formation of HVLs. Our research aims to deepen our 
understanding of igneous processes associated with magma-
intermediate margins, offering valuable insights that could lead 
to a more precise classification of passive margins.

2   |   Geological Backgrounds and Rift Magmatism 
in the SCS Margin

The SCS margin, located southeast of the Eurasian continent, 
is a passive margin formed through the rifting of the South 

Summary

•	 In magma-intermediate margins, the preferential 
removal of the lithospheric mantle during late-stage 
syn-rift plays a crucial role in enabling crustal melting 
by allowing the crust to be heated by the upwelling 
asthenosphere.

•	 The study reveals a younger-oceanward trend in mag-
matism and a strong correlation between the pres-
ence of crustal melts and thin-crust domains (< 20 km 
thick).

•	 Comparison of modelling results with seismic ob-
servations from the SCS margin suggests that both 
asthenospheric and crustal melts contribute to the 
formation of HVLs, with crustal melts estimated to 
constitute approximately 15%–30%.
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China block (Figure 1a) (Taylor and Hayes 1983; Li et al. 2018). 
Following the breakup of the South China block, seafloor 
spreading initiated in the east and northwest SCS sub-basins at 
approximately 33 Ma and subsequently propagated to the south-
west SCS sub-basin at around 23.6 Ma (Taylor and Hayes 1983; 
Li et al. 2014). The SCS margin exhibits multiple phases of mag-
matic activity, dominated by late Mesozoic arc magmatism (e.g., 
Zhou and Yao 2009; Li et al. 2018) and post-rift intrusions (e.g., 
Zhao et al. 2014; Ma et al. 2016; Fan et al. 2019; Song et al. 2017; 
Wang et al. 2018; Zhao, He, et al. 2018; Deng et al. 2019; Gao 
et al. 2019; Zeng et al. 2019; Sun et al. 2020), with limited syn-rift 
magmatism. The apparent scarcity of syn-rift igneous activity 
previously supported its classification as a magma-poor margin 
(e.g., Barckhausen and Roeser 2004; Li 2011; Franke 2013; Savva 

et al. 2014; Zhang et al. 2016). The view of the SCS margin as 
magma-poor has been challenged by alternative interpretations. 
For instance, the presence of high-velocity lower crustal layers, 
detected in refraction seismic profiles, has been proposed as evi-
dence of rift-related magmatism during the Cenozoic (e.g., Wang 
et al. 2006; Wei et al. 2011; Lester et al. 2014; Wan et al. 2017; Liu, 
Zhao, et al. 2018; Wan et al. 2019; Fan et al. 2019). These syn-rift 
magmatic additions in the northern SCS margin varied along 
the strike, as revealed by wide-angle seismic profiles. The east-
ern regions, including the Pearl River Mouth Basin and Tainan 
Basin, exhibit more significant magmatic additions compared 
to the western Qiongdongnan Basin (see the discussion section 
for the reference lists). Moreover, the availability of new, high-
quality seismic data has significantly improved the identification 

FIGURE 1    |    Integrated geophysical and geological data for the northern SCS margin, including bathymetry with boreholes (a), crustal thick-
ness (b) (extracted from Li et al. 2019), and seismic profiles 04ec1555-15ecLW7 (c) (interpreted after Sun et al. 2019), Line 1 (e) (modified after Zhao 
et al. 2022), and N2 (d) (modified after Ding et al. 2020) with interpreted magmatic reflectors. TW: Taiwan, PH: Philippine, HN: Hainan.
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and interpretation of magmatic reflectors within the SCS mar-
gin. These findings suggest that the SCS experienced substantial 
rift-related magmatism, with magmatic additions concentrated 
in short-duration events during the late syn-rift stage (Larsen 
et al. 2018; Sun et al. 2019; Ding et al. 2020; Zhang et al. 2021, 
2023; Pérez-Gussinyé et al. 2023).

Three long composite seismic reflection profiles (lines 
04ec1555-15ecLW7, Line 1, and N2) that cross the COT of the 
northern SCS margin are exhibited to characterise the diverse 
magmatic reflectors present (Figure 1) (Sun et al. 2019; Ding 
et  al.  2020; Zhao et  al. 2022). The seismic data reveal vari-
ous discontinuous reflections with moderate to high ampli-
tudes above the Moho, particularly in line 04ec1555-15ecLW7, 
which thicken landward and are interpreted as magmatic ad-
ditions (Figure 1c). These reflections, potentially indicative of 
magmatic underplating, have been linked to melting events 
at the distal margin during the final phase of syn-rift (Sun 
et al. 2019). Similar magmatic reflectors have been identified 
in other seismic studies of the SCS margin (Figure 1d,e) (Ding 
et al. 2020; Zhang et al. 2021; Zhao et al. 2022). Furthermore, 
these magmatic additions within the COT have been char-
acterised as rapid events occurring during the late stages of 
continental extension, likely resulting from decompression 
melting associated with the upwelling of hot asthenosphere 
(Larsen et al. 2018; Ding et al. 2020; Nirrengarten et al. 2020). 
These interpretations are supported by drilling results from 
IODP Expeditions 367 and 368, and further constrained by 
drilling and seismic volcano-stratigraphy in the Baiyun-
Liwan deep-water area, which suggests significant magmatic 
activity during late-stage rifting around 33.9 Ma (Figure  1a, 
Zhu et al. 2023).

Seismic studies reveal that the SCS margin differs significantly 
from typical magma-poor margins, exhibiting substantial rift-
related volcanism, particularly in the late syn-rift stages, but 
lacking exhumed mantle. The SCS margin also shares some 

magmatic characteristics with magma-rich margins, but their 
origins differ. Magma-rich margins often exhibit extensive mag-
matism linked to large igneous provinces or hotspots, with thick 
HVLs (P-wave velocity of 7.2–7.5 km/s) and widespread SDRs 
(Mutter 1993; Coffin and Eldholm 1994). In contrast, the HVLs 
observed in the SCS margin are likely derived from both asthe-
nospheric and crustal melting, are thinner, and the margin itself 
lacks SDRs. The spatial distribution of magmatic additions in 
the SCS is also distinct from that in typical magma-rich mar-
gins. In the SCS, magmatism is primarily concentrated beneath 
the COT and extends towards the distal domain (Geoffroy 2005; 
Lei, Ren, et al. 2019; Sun et al. 2019; Tugend et al. 2020), whereas 
in magma-rich margins, magmatic processes occur across a 
wider area, from the thin crust to the proximal domain (Menzies 
et al. 2002).

3   |   Numerical Model Description

We perform numerical modelling using a 2D thermomechanical 
code modified after Gerya (2010) and Gerya and Yuen (2007), in 
which finite differences and marker-in-cell methods are used to 
solve the momentum, continuity, and heat conservation equa-
tions, assuming an incompressible medium. Refer to the sup-
porting documentation for additional information about the 
governing equations and material parameters. We design an ex-
tensional model with physical dimensions of 1000 km long and 
600 km thick (Figure 2a). A 20-km thick sticky air is imposed 
on the upper crust to act as a free surface (Crameri et al. 2012). 
The velocity boundary conditions for all other boundaries are 
all free slip.

The earlier research on the SCS, which set restrictions on the 
initial model thickness, served as the foundation for the models 
that we developed (e.g., Li et al. 2019). The initial lithospheric 
thickness was set at 90 km. The material properties were de-
fined by assigning different rock types: quartzite for the upper 

FIGURE 2    |    Initial model setup. (a) An enlarged 400 km × 200 km section of the initial 1000 km × 600 km model, illustrating its composition, 
boundary conditions, and initial temperature distribution (red lines). (b) The yield strength profile (yellow and black line) and temperature distribu-
tion (red line) within the model. (c) The geotherm, solidus, and liquidus of the upper crust as a function of pressure and temperature.
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continental crust and either plagioclase or felsic compositions 
for the lower continental crust (e.g., Liao and Gerya  2015) 
(Figure  2b). The plastic rheology was modelled using the 
Drucker-Prager yield criterion, while the viscous rheology in-
corporated both diffusion and dislocation creep. The strength of 
the lithospheric and asthenospheric mantle was determined by 
olivine rheology. A weak zone was introduced in the middle of 
the model to facilitate stress localization. The surface processes 
in our models were calculated by employing a simplified gross-
scale erosion/sedimentation law, which assumed a constant and 
observably acceptable sedimentation/erosion rate of 0.2 cm/yr 
(Burov and Cloetingh 1997).

In this study, we concentrate on the factors influencing the 
architecture of rifted margins, specifically the extension rate, 
crustal rheology, and geothermal to evaluate the correlation 
between crustal stretching and magmatic processes. To explore 
the sensitivity of our models, we performed additional tests 
using extension velocities of 0.65, 0.315, and 0.25 cm/yr. The 
rheological weakness of the continental lithosphere in the south 
Chinese continent, as revealed by geophysical and geochemical 
studies, also plays a role in controlling the width of the thinned 
SCS continental crust (Li et al. 2019). To accommodate the rhe-
ological weakness, a scaling factor ( f) is introduced and modi-
fied to generate a weaker rheological strength compared to the 
base set, with strength decreasing as the scaling factor decreases 
(Figure 6).

The principle of the seismic interpretation on the structure 
dictates that once rock undergoes melting, regardless of sub-
sequent re-solidification, seismic profiles typically display 
characteristic low-frequency continuous reflections with an 
arcuate shape and a distinct diverging internal reflection 
pattern. Consequently, the magmatic phases identified in the 
seismic profiles include any and all products of melting that 
occurred during the continental rifting process. To ensure ac-
curate comparison with seismic observations, our numerical 
models are designed to retain a record of all melts produced 
at each time step, resulting in a cumulative increase in the 
volume of melts as rifting progresses.

Thermal histories from seismological profiles, modelled using 
observed subsidence via backstripping and constrained by 
heat flow and crustal thickness data (He et  al.  2002), were 
combined with previous models of the SCS evolution (e.g., Le 
Pourhiet et  al.  2018; Li et  al.  2019). Based on these studies, 
the initial geothermal temperature at the base of the litho-
spheric mantle was set to 1300°C. Additionally, we tested 
geothermal temperatures of 1200°C, 1300°C, and 1400°C 
to assess the associated uncertainties and their impact on 
the modelling results. The asthenosphere is characterised 
by an adiabatic temperature gradient of 0.5°C/km (e.g., 
Naliboff and Buiter  2015). The solidus and liquidus tem-
peratures for various lithologies, including wet quartzite, 
are determined based on experimental observations and are 
incorporated into the models (e.g., Poli and Schmidt  2002). 
The solidus temperature of the wet quartzite was given by: 
Tsolidus = 889 + 536.6/(0.03P + 1.609) + 18.21/(0.03P + 1.609)2 
at P < 1200 MPa, and Tsolidus = 831.3 + 0.06P at P > 1200 MPa. 
The liquidus temperature of the wet quartzite is expressed as: 
Tliquidus = 1262.0 + 0.09P (Figure 2c) (Schmidt and Poli 1998). 

T represents temperature and P represents pressure. The soli-
dus and liquidus temperatures for various lithologies at differ-
ent pressures, along with other relevant material parameters, 
are detailed in Table S1.

4   |   Results

4.1   |   Reference Model

Model 1, simulated with a rapid extension rate of 0.65 cm/yr, 
plagioclase-rich lower crust, initially exhibits the formation of 
a detachment fault in the crust, accommodating deformation 
through simple shear. The process results in a tilted crustal 
block and the creation of a sediment-filled basin (Figure  3a). 
The lithospheric mantle, in contrast, deforms by pure shear, 
leading to the development of a necking zone. The final stage of 
the model reveals extensive crustal thinning and the generation 
of melts due to adiabatic decompression of the upwelling asthe-
nosphere (Figure 3d).

The model shows that at approximately ~0.7 Myr, after 9.1 km 
of extension, the lower crust and lithospheric mantle rupture 
(Figure  3b). The rupture brings the upper crust into direct 
contact with the rising asthenosphere, allowing heat transfer 
and an increase in crustal temperature. When the tempera-
ture at the base of the crust reaches or surpasses the quartzite 
solidus, the crust begins to melt. The initial crustal melts form 
at a depth of 22 km, where the temperature exceeds the solidus 
temperature of 915 K (Figure  3b,f). At this point, the upper 
crust has been stretched to a thickness of about 16–17 km 
(Figure 3b). By tracing the evolution path of the early melts, 
it is observed that the location of these early melts also marks 
the furthest inland extent of crustal melting observed in the 
model (Figure 3d).

As the extension continues, a larger area of the crust is sub-
jected to the high temperatures of the asthenosphere, leading 
to an increase in the volume of crustal melts (Figure 3g). The 
newly generated melts primarily migrate seaward, positioning 
themselves beneath the increasingly thinned crust. As a result, 
the age of the crustal melts decreases progressively towards the 
distal domain. The crustal melts reach their maximum width of 
50 km when the crust finally ruptures, which corresponds to the 
width of the thinned crustal region with a thickness of less than 
17 km (Figure 3d).

4.2   |   Models With Varying Extensional Velocities

The results illustrated in Figure  4 demonstrate that vary-
ing extensional velocities lead to distinct results in the mod-
els. Generally, models with lower extension velocities exhibit 
a smaller region of highly thinned crust and a narrower zone 
of magmatic addition. For example, when the velocity is set 
to 0.315 cm/yr, a narrow zone of hyper-extended crust devel-
ops, with approximately 35 km exposed to the asthenosphere. 
Consequently, the final state of model 2 shows a melt zone with a 
width of 35 km, significantly narrower than the 50 km observed 
in the model with a higher extension velocity (Figure  4c,d). 
In this slower extension model, crustal melting initiates at 2.2 
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Myr and progressively increases towards the ocean, indicating 
a younger age for melts located further offshore, similar to the 
pattern observed in the faster extension model. At 2.8 Myr, con-
tinental rupture occurs, and the melt distribution reaches a sta-
ble configuration (Figure 4i).

When the extension velocity is further reduced to 0.25 cm/yr, 
the crust and lithospheric mantle rupture simultaneously, re-
sulting in inadequate heat transfer to the crust (Figure 4e–h). 
The temperature of the crust, ranging from 550 to 750 K, re-
mains below the quartzite solidus, preventing any crustal 
melting (Figure 4j).

Furthermore, the deformation patterns in models 2 and 3 con-
trast significantly during the initial extension stages. In model 
2, the crust deforms through simple shear along a detach-
ment fault, while the lithospheric mantle deforms through 
pure shear (Figure 5a). Conversely, model 3 experiences pure 
shear deformation in both the crust and lithospheric man-
tle, with major conjugate faults cutting through both layers 
(Figure 5b). It ultimately leads to the simultaneous rupture of 

the crust and lithospheric mantle in the final stage of model 
3 (Figure 5d).

4.3   |   Models With Varying Effective Viscosities

In models 5 and 6, the effective viscosity is varied to create a 
weaker rheological strength compared to the reference model 
4 (Figure  6). The results show that both models 5 and 6 ex-
perience an extended duration of extension and a wider zone 
of highly thinned crust. The prolonged extension allows for 
a longer heating period, leading to a significant increase in 
crustal temperature. The elevated temperatures in models 5 
and 6 result in a broader distribution of melted material be-
neath the extended crust. Consistent with models 1 and 2, the 
melts in models 5 and 6 also occur at the base of the crust, typ-
ically where it is thinner than 20 km. The widths of the crustal 
melts in model 5 and model 6 reach approximately 80 km 
and 100 km, respectively. The extended heating duration also 
leads to various thermal anomalies. In model 5, the edge of 
the thinned continental crust undergoes complete melting, 

FIGURE 3    |    Temporal evolution of Model 1 under rapid extension (0.65 cm/yr) and reference viscosity, showing compositional changes (a–d), 
strain rate at 0.4 Myr (e), P–T–t paths of representative markers (f), and the proportion of crustal melts over time (g). The abbreviation TUC refers to 
the thickness of the upper crust.
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resulting in magmatic additions overlying it (Figure  6i). In 
model 6, some regions exhibit extensive melting that perme-
ates nearly the entire crust (Figure 6l).

We further varied the extension velocities in models with different 
rheology. The results displayed a similar trend to the conclusions 
drawn in Section 4.2, where models with lower extension veloci-
ties exhibit a smaller region of highly thinned crust and a narrower 
zone of magmatic addition (Figure 7). In the models presented in 
Figure 7, which have weaker effective viscosity compared to the 
reference model, the lithospheric mantle in Model 10 and Model 11 
ruptures before the crust, even with the lower velocity of 0.25 cm/

yr. The upwelling asthenosphere heats the crust, leading to melt 
generation at the base of the crust (Figure 7d,h).

4.4   |   Models With Varying Temperatures at 
the Base of the Lithospheric Mantle

With the same velocity and rheology, we varied the geother-
mal temperature at the base of the lithospheric mantle, test-
ing values of 1200°C, 1300°C, and 1400°C. For models with 
velocities of 0.65 cm/yr and 0.315 cm/yr, higher temperatures 
result in a smaller region of highly thinned crust exposed to 

FIGURE 4    |    The influence of extension velocity on rifting dynamics and melt generation, illustrated by the evolution of model 2 (a–d) at 0.315 cm/
yr and model 3 (e–h) at 0.25 cm/yr. The figure includes P–T–t paths (j) and the time evolution of crustal melt proportions (i) for both models. The red 
dotted line in (j) represents the solidus of the representative markers, and TUC refers to the thickness of the upper crust. The abbreviation TUC refers 
to the thickness of the upper crust.
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8 of 18 Basin Research, 2025

the asthenosphere, leading to a narrower zone of crustal melts 
(Figure 8a–f). However, when the velocity decreases to 0.25 cm/
yr, the models evolve similarly to Model 3, where the crust and 
mantle rupture simultaneously, and no crustal melting occurs, 
regardless of the geothermal temperature at the base of the litho-
spheric mantle (Figure 8g–i).

We replace the plagioclase-rich lower crust with a felsic lower 
crust, which exhibits weaker rheological strength (Figure  2b). 
Model 20 and Model 21 incorporate a felsic lower crust with 
basal lithospheric mantle temperatures of 1200°C and 1300°C, 
respectively. Consistent with the findings in Section 4.3, these 
models, characterised by a weaker rheology, undergo prolonged 

FIGURE 5    |    Viscosity snapshots of contrasting deformation patterns in Model 2 (a, b) and Model 3 (c, d).

FIGURE 6    |    Evolution of model 4 (d–f), model 5 (g–i), and model 6 (j–l) applied with different viscosity strengths (a–c), respectively.
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9 of 18

extension and develop a broader zone of highly thinned 
crust compared to cases with a plagioclase-rich lower crust. 
Additionally, the models exhibit a more extensive distribution 

of crustal melts, predominantly concentrated beneath hyper-
extended domains by the end of the numerical simulations. The 
extension duration reaches up to 30 Myr, and the width of the 

FIGURE 7    |    Evolution of models with weak viscosity strength, compared to Reference Model 1, and tested with different velocities. Model 5 (b), 8 
(c), 10 (d) with viscosity strength in (a), Model 6 (f), 9 (g), 11 (h) with viscosity strength in (e).

FIGURE 8    |    Evolution of models with varying temperatures at the base of the lithospheric mantle. (a), (d), (g) with temperature of 1200 ℃, (b), (e), 
(h) with temperature of 1300℃, (c), (f), (i) with temperature of 1400℃.
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10 of 18 Basin Research, 2025

crustal melting zone extends to approximately 200 km, aligning 
more closely with observations from the late-stage rift evolution 
of the SCS margin. Notably, further modifications to the geo-
thermal gradient appear to have minimal impact on the final 
crustal architecture of the rifted margins. Both Model 20, with 
a basal lithospheric mantle temperature of 1200°C, and Model 
21, with 1300°C, display similar rift durations and comparable 
extents of crustal melting (Figure 9).

5   |   Discussion

5.1   |   Discussion on the Controlling Factors

Extension rate and lithospheric strength are key parameters that 
determine the final crustal architecture of rifted margins and 
regulate the magmatic budget during the rifting process (e.g., 
Huismans and Beaumont  2003; Gouiza and Paton  2019). Our 
research reveals similar trends and further suggests that these 
factors also control the spatial extent and distribution of crustal 
melts along the magma-intermediate margin.

The average extension rate, defined as margin width increase 
divided by rifting duration, is difficult to calculate precisely 
due to uncertainties in rift initiation timing and ages of the SCS 
oceanic basin (Bai et al. 2020). Our studies suggest that a rapid 
full extension rate, such as 13 mm/yr, can produce results con-
sistent with observations in the SCS margin. In terms of crustal 
architecture, our models indicate that a high extension rate 
promotes strain localization, which in turn facilitates the devel-
opment of low-angle detachment faults that accommodate most 
of the extension. Consequently, at the end of our simulations, 
one margin becomes markedly hyperextended while its conju-
gate retains much of its original crustal structure. Observations 
in the SCS margin support this, with seismic interpretations 
revealing half-graben rift basins underlain by low-angle nor-
mal faults extending downward into the Moho unconformity 
(Dong et al. 2014; Hayes et al. 1995; Ren et al. 2018; Zhao, Ren, 
et  al. 2018). The SCS margin is asymmetric, with the north-
ern margin developing a broad, hyperextended basin with 
significant subsidence, while the southern margin retains a 
thicker crust with more distributed normal faulting (Hayes 
and Nissen 2005). Additionally, our models show that crustal 

melts predominantly occur beneath the thin-crust domain, 
specifically where the crust is less than 20 km thick. A faster 
extension rate broadens the zone of highly thinned crust, which 
in turn promotes the production of crustal melts. These model 
predictions align with seismic observations from both the SCS 
and Namibia margins, where highly reflective seismic facies, 
with stratification subparallel to the Moho, have been identified 
beneath stretched crust, interpreted as late-stage syn-rift mag-
matism (Geoffroy et al. 2022; Zhao et al. 2022).

Previous numerical simulations (e.g., Brune et  al.  2016) have 
demonstrated an initial phase of slow extension followed by a 
rapid increase prior to continental breakup. Plate reconstruc-
tions (e.g., Ulvrova et al. 2019) reveal similar patterns, such as the 
rapid pre-breakup extension of the SCS in the late Eocene. Our 
work focuses on magmatism during the late stage of syn-rifting, 
and our higher simulated rate may correspond to later rift phases 
characterised by increased activity. Recent seismic studies of the 
SCS margin indicate that magmatic additions within the COT 
are rapid events occurring during the late stages of continen-
tal extension (Larsen et al. 2018; Ding et al. 2020; Nirrengarten 
et al. 2020). Thus, our results imply that these rapid magmatic 
events are likely linked to the strong driving forces that promote 
lithospheric weakening during the rifting of the SCS margin. 
Despite these findings, the extension rate of the SCS is considered 
intermediate compared to other well-studied rift systems world-
wide. For example, the Brazil–Angola margin has an extension 
rate of approximately 8 mm/yr (Heine et  al.  2013), the Gulf of 
Aden rift extends at about 10 mm/yr (Brune and Autin 2013), the 
Red Sea Rift at 18–20 mm/yr (Viltres et al. 2020), and the Afar 
rift zone at roughly 20 mm/yr (Moore et al. 2021). These features 
position the SCS as a key transitional system in rift dynamics, 
demonstrating moderate extension rates, intermediate magmatic 
activity, and a high degree of structural complexity.

The lithospheric strength, influenced by compositional vari-
ations (e.g., felsic vs. plagioclase lower crust) and thermal 
structure, plays a critical role in the distribution of melted 
material in the SCS during rifting. A weaker lithospheric 
rheology promotes prolonged extension and the formation of 
a broader hyper-extended crust, largely due to the increased 
ductile deformation in the lower crust, as revealed in pre-
vious studies (Buck  1991; Huismans and Beaumont  2003; 

FIGURE 9    |    Evolution of models featuring a felsic lower crust with different basal lithospheric mantle temperatures. (a) and (b) are evolution of 
model 20 with temperature of 1200 ℃, (c) and (d) are evolution of model 21 with temperature of 1300℃.
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Gouiza and Paton 2019). Numerical modelling indicates that 
a weaker felsic lower crust extends the rifting duration to ap-
proximately 30 Ma, which is significantly longer than that of 
a plagioclase-rich lower crust and aligns more closely with 
the rifting history of the SCS. The weaker rheology in the SCS 
lower crust is attributed to pre-rift processes, such as crustal 
deformation and magmatic additions during the Mesozoic 
(Brune et al. 2017). In addition, the subduction of the Izanagi 
plate is also thought to have triggered magma upwelling, 
which heated the lithosphere and lowered crustal viscosity (Li 
et al. 2018; Bai et al. 2020).

Prolonged extension, facilitated by reduced lithospheric 
strength, allows for extended heating periods, significantly el-
evating crustal temperatures. This results in a broader distribu-
tion of crustal melts at the end of numerical simulations. The 
melts are predominantly concentrated beneath hyper-extended 
domains, especially where the crust is less than 20 km thick. 
In the northern SCS margin, the thin-crust domains exhibit 
notably high surface heat flow, reaching up to approximately 
120 mW/m2. This observed heat flow anomaly is driven by 
two primary processes: (1) intense crustal thinning, which en-
hances mantle ascent and heat transfer (Huismans et al. 2001; Li 
et al. 2019); and (2) continuous upwelling of hot asthenosphere, 
maintaining elevated geothermal gradients during continen-
tal breakup (Lei  2013; Shi et  al.  2017). In essence, the inter-
play between crustal thinning and mantle upwelling increases 
heat flow and promotes crustal melt generation, particularly in 
hyper-extended regions. Our models confirm these findings and 
further demonstrate that the initially weak SCS lithosphere, par-
ticularly the weaker lower crust, acts as a key factor in facilitat-
ing the interaction between crustal thinning, mantle dynamics, 
and melting generation during continental breakup.

5.2   |   Numerical Results Summary

In contrast to previous models of magma-rich margins that 
employed a mantle plume beneath the continent (e.g., Koptev 
et  al.  2021), we used a homogeneous model with extensional 
velocities on both sides to simulate the passive extension of 
the lithosphere at a magma-intermediate margin. Our findings 
demonstrate the feasibility of crustal melting at passive mar-
gins. The preferential removal of mantle lithosphere during rift-
ing emerges as a crucial factor for crustal melting, as it enables 
the crust to receive sufficient heat from the upwelling astheno-
sphere to reach its solidus temperature. The condition aligns 
with the findings of Lu and Huismans (2022), who reported a 
similar prerequisite for melt generation in rifted magma-rich 
margins, where the rupture of the lithospheric mantle must pre-
cede that of the crust. In the SCS, recent work using OBS and re-
flection seismic profiles (Zhang et al. 2023) has shown that the 
mantle lithosphere was removed before the crust. Our model 
results agree with these findings and extend these conditions 
to encompass crustal melting in magma-intermediate margins.

Our modelling reveals a distinct deformation pattern, with the 
lithospheric mantle undergoing pure shear deformation while 
the crust experiences simple shear (Figure  10a). The onset of 
crustal melting coincides with the initial rupture point of the 
lithospheric mantle, and the melt zone subsequently propagates 

oceanward. This implies a progressive younging of the melts to-
wards the ocean, ultimately manifesting as layers parallel to the 
Moho (Figure 10c). The crustal melts predominantly occur be-
neath the thin-crust domain, specifically where the crust is less 
than 20 km thick. These observations align with phenomena 
documented along the SCS margin and are further corroborated 
by studies from other rifted margins. These studies highlight the 
presence of distinct, elongated magmatic intrusions within the 
COT zone, which exhibit a progressive increase in volume to-
wards the ocean (Russell and Whitmarsh 2003; Pérez-Gussinyé 
et al. 2006; Ding et al. 2020; Zhang et al. 2021).

5.3   |   Comparison With the Northern SCS Margin

The SCS margin, previously classified as magma-poor, has 
been re-evaluated due to recent seismic evidence indicating 
the presence of syn-rift magmatic materials. These findings 
suggest that the SCS represents an intermediate type between 
magma-poor and magma-rich margins (Sun et al. 2019; Ding 
et al. 2020; Pérez-Gussinyé et al. 2023), characterised by ac-
tive volcanism during the rifting process, particularly in the 
late stages of syn-rift. Several ocean bottom seismometer 
(OBS) refraction seismic surveys, including OBS2001 (Wang 
et al. 2006), OBS2006-3 (Wei et al. 2011), OBST3 (Lester et al. 
2014), T2933, OBS2012 (Wan et  al.  2017), OBS2015-2 (Liu, 
Zhao, et  al. 2018), OBS2016-2 (Wan et  al.  2019), NS5 (Fan 
et  al.  2019), have identified HVLs in the lower crust of the 
SCS, characterised by P-wave velocities ranging from approx-
imately 6.9 to 7.5 km/s. These HVLs are interpreted as signifi-
cant structural indicators of magmatic activity situated above 
the Moho. Recent studies have further divided the HVLs 
into two sections: one associated with the Mesozoic volca-
nic arc beneath the continental shelf, and the other linked to 

FIGURE 10    |    Schematic illustration showing the evolution of crustal 
melts at a magma-intermediate margin during late stages of syn-rift. 
(a) The contrasting deformation patterns of the crust (simple shear) and 
lithospheric mantle (pure shear). (b) The initiation of crustal melts at 
the point of lithospheric mantle rupture, where the crustal thickness is 
less than 20 km. (c) The seaward propagation of crustal melts, ultimately 
forming layers parallel to the Moho.
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Cenozoic rift-related magmatism beneath the ultra-thinned 
crust in the COT (Wan et al. 2017; Li et al. 2018; Lei, Ren, et al. 
2019; Cheng et al. 2021). Figure 11 illustrates the correlation 
between the distribution of potential rift-related magmatism 
and crustal thickness. The figure demonstrates that magmatic 
additions are primarily concentrated on the continental slope 
where the crustal thickness is less than 20 km. These obser-
vations align with the numerical modelling results, which in-
dicate that the presence of melts is restricted to regions with 
thinned crust below 20 km in thickness.

As illustrated in Figure 11, the majority of rift-related HVLs 
are concentrated in the eastern region of the northern SCS 
margin. The pattern is consistent with previous research that 
has also identified a significant east–west contrast of HVLs in 
the extent of rift-related magmatism (Wan et  al.  2017; Chen 
et al. 2022). The eastern margins, particularly the Pearl River 
Mouth Basin and Tainan Basin, exhibit a much higher abun-
dance of HVLs compared to the western Qiongdongnan Basin. 
The Qiongdongnan Basin, on the other hand, shows a signifi-
cantly lower occurrence of HVLs, which may be attributed to 
serpentinisation (Lei, Ren, et al. 2019). Our numerical results 
propose that the westward decrease in rift-related magmatism 
is primarily attributed to differential crustal stretching along 
the margin. The eastern region experienced greater extension, 
leading to the development of extensive thin-crust domains, 
which are conducive to melting generation. In contrast, the 
western region underwent less extension, resulting in the in-
frequent occurrence of crusts thinner than 20 km, a critical 
threshold for melt production in our models. The development 
of highly thinned crust in the SCS margin is likely influ-
enced by a multitude of factors, including variations in crustal 
structure (e.g., Li et al. 2019), extension velocity (e.g., Pérez-
Gussinyé et al. 2016), the style of breakup (plate-edge or plate-
interior) (e.g., Wang et al. 2019; Li et al. 2020), water content 

in the for-arc or arc domain (e.g., Sun et  al.  2021), and the 
inheritance of pre-existing structures (e.g., Huang et al. 2019).

The thickness of crustal melts predicted by our models was 
found to be less than the observed thickness of HVLs (7–10 km) 
in the seismic profiles. Considering that both asthenospheric 
and crustal melts contribute to rift-related magmatism in 
the SCS margin, it is plausible that the additional thickness 
in the HVLs is due to decompression melts from the rising 
asthenosphere. By subtracting the modelled crustal melt 
thickness from the observed HVL thickness, we estimate that 
asthenospheric magma constitutes approximately 70%–85% 
of the HVLs, while crustal melt accounts for the remaining 
15%–30%.

The recent increase in industrial exploration has revealed igne-
ous rocks intruded during the syn-rift to early post-rift period 
of the SCS margin. Two boreholes, PY24-1-1 and L-6, located 
in the thin-crust domain (characterised by a thickness of less 
than 20 km) and exhibiting typical igneous characteristics, were 
selected to determine the timing of melting. These boreholes 
contain igneous rocks emplaced during the syn-rift magma-
tism, dated at 42 Ma and 44.6 Ma, respectively (Li et  al. 1999; 
Qiu et al. 2016; Pang et al. 2022). The age variation indicates a 
southward (oceanward) younging trend in magmatism within 
the northern SCS margin (Figure  10). Previous models at-
tributed the late syn-rift to early post-rift magmatic activity in 
the northern SCS to either southeastward mantle flow induced 
by the Indo-Eurasian collision or the southward migration of the 
Hainan Plume (Xia et al. 2016; Zhang et al. 2018; Yu et al. 2018). 
However, while these mechanisms can explain the generation 
of decompression melts, they do not account for the presence 
of crustal melts, which have a distinct origin. Our numerical 
results support the interpretation that the younger–ocean-
ward trend of magmatism is a consequence of the progressive 

FIGURE 11    |    Crustal thickness map of the northern SCS margin, illustrating the spatial distribution of Cenozoic rift-related HVLs and the ages 
of drilled igneous rocks. The potential distribution of rift-related HVLs is based on interpretations from various OBS surveys (Wang et al. 2006; Wei 
et al. 2011; Lester et al. 2014; Wan et al. 2017; Liu, Zhao, et al. 2018; Wan et al. 2019; Fan et al. 2019; etc.), while the crustal thickness contour is derived 
from Li et al. (2019). The ages of the drilling rocks are compiled from multiple sources (Qiu et al. 2013, 2016; Pang et al. 2022).
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exposure of the crust to the hot asthenosphere as extension pro-
ceeded from north to south.

5.4   |   Comparison With the Southern SCS Margin

Numerous geophysical surveys have been conducted to investi-
gate the crustal structure of the SCS margin. However, the spa-
tial coverage of these studies remains uneven, with significantly 
fewer surveys in the southern SCS compared to the northern 
region. Seismic refraction studies have revealed that HVLs at 
the COT are predominantly found in the northern SCS margin, 

whereas no HVLs have been observed in the southern mar-
gin (Nissen et al. 1995; Yan et al. 2006; Wang et al. 2006; Wei 
et al. 2011; Pichot et al. 2014; Chang et al. 2024). This suggests 
fundamental differences in the tectono-magmatic processes be-
tween the conjugate margins of the SCS.

The continental breakup in the SCS is asymmetric. In the 
northern SCS, the hyper-extended continental crust is sig-
nificantly wider and is accompanied by extensive magmatism 
beneath it. In contrast, the southern SCS margin exhibits a 
more abrupt transition in crustal thickness from the con-
tinental to the oceanic domain, with oceanward-dipping 

FIGURE 12    |    Bathymetry of the southern SCS margin (a) with reflection seismic profile DP2020-MCS (b) and refraction seismic profile OBS973-2 
(c), illustrating the lithospheric characteristics (Wei et al. 2015; Jiang et al. 2024).
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14 of 18 Basin Research, 2025

syn-rift faults developing within the continental crust (Jiang 
et al. 2024) (Figure 12b). P-wave velocity models further illus-
trate the asymmetry, indicating that the southern SCS retains 
a relatively normal lithospheric structure. The Moho depth 
varies from approximately 20–22 km beneath the Reed Bank 
to around 9–11 km in the oceanic basin, with no evidence of 
HVLs, thin or absent sedimentary cover, and a characteristic 
continental crustal stratigraphy (Wei et al. 2015) (Figure 12c). 
These observations contrast sharply with those of the north-
ern margin, where significant lower crustal magmatic intru-
sions have been identified.

Our numerical modelling results provide additional insights 
into the nature of the asymmetry, revealing that magmatic ac-
tivity and crustal melts are primarily concentrated on the left-
hand side of the rift (northern SCS). In contrast, the right-hand 
margin (southern SCS) is narrower and retains the lithospheric 
mantle, consistent with previous studies (e.g., Brune et al. 2014). 
The presence of this preserved lithospheric mantle in the south-
ern SCS acts as a thermal barrier, inhibiting the transfer of heat 
into the crust. Consequently, the southern SCS margin experi-
ences limited or negligible crustal melting. The thermal and me-
chanical asymmetry aligns well with geophysical observations, 
which show an absence of magmatic underplating and a sharper 
transition from continental to oceanic crust along the southern 
SCS margin. These findings suggest that the contrasting litho-
spheric configurations of the conjugate margins play a critical 
role in governing the magmatic evolution of the SCS.

5.5   |   Model Limitations

Numerical models are strongly dependent on initial and bound-
ary conditions, which influence the accuracy and applicability 
of the predictions. In our simulations, we conducted sensitivity 
analyses on key parameters, including extension velocity, ther-
mal structure, lithospheric rheology, and crustal composition 
(e.g., felsic vs. plagioclase-rich lower crust), to evaluate their 
effects on the final crustal architecture and magmatic activ-
ity in rifted margins. As demonstrated in the results section, 
rapid extension rates and weaker lithospheric rheology, such 
as the presence of a felsic lower crust, tend to promote exten-
sive crustal thinning and a broader zone of magmatic addition. 
However, several factors that could further impact magmatic 
budgets were not explicitly incorporated due to our model 
simplifications. For instance, our models did not account for 
pre-rift structural inheritance, which plays a crucial role in 
rift asymmetry. The presence of ancient sutures and inherited 
lithospheric heterogeneities can significantly influence strain 
localization and differential magmatic activity along conjugate 
margins (Gouiza and Naliboff 2021). Future models incorporat-
ing such structural complexities may provide a more accurate 
representation of natural rift evolution. Nevertheless, despite 
these simplifications, our results can offer a first-order approx-
imation of crustal magmatic activity in a magma-intermediate 
margin under an idealised homogeneous setting.

To localise deformation, we introduced a weak zone in the ini-
tial model setup. Consequently, our simulations primarily repre-
sent the late-stage rift evolution leading to continental breakup 
rather than the entire rifting process. Although our models 

do not capture the full rifting history, the limitation does not 
affect the relevance of our findings regarding magmatic pro-
cesses in the SCS margin. Seismic studies indicate that mag-
matic additions within the COT occur as rapid events during 
the final stages of continental extension (Larsen et  al.  2018; 
Ding et  al.  2020; Nirrengarten et  al.  2020). Since our models 
focus on this crucial time frame, the results remain effective in 
capturing the key processes governing the magmatic additions. 
Another important consideration is our assumption of a con-
stant extension rate. Previous studies have suggested that rift 
evolution may involve an initial slow phase followed by a sharp 
acceleration before continental breakup (Brune et  al.  2016; 
Ulvrova et al. 2019). While our models adopt a constant veloc-
ity approach, we explore a broad range of extension rates, from 
slow to rapid, to assess their first-order effects. The approach 
is effective in capturing the sensitivity of magmatic processes 
to extension velocity. Furthermore, since our study primarily 
focuses on the late-stage syn-rift evolution of the SCS, the use 
of a constant velocity remains a reasonable approximation for 
understanding the associated crustal melting events.

Additionally, mantle dynamics remain a significant source of 
uncertainty in our models. Natural rifting environments likely 
involve complex interactions between small-scale convection, 
asthenospheric flow, and melt migration (Faccenna et al. 2014), 
which we approximate using a simplified, uniform astheno-
spheric flow pattern. While our models predict the spatial dis-
tribution and volume of magmatic additions under idealised 
conditions, future work integrating advanced thermomechan-
ical coupling and dynamic mantle flow simulations could pro-
vide a more realistic representation of these processes.

Finally, while our 2-D models capture key aspects of crustal 
melting events during the late stage of rifting, the models fail 
to represent the full 3-D complexity of magmatic systems. 
Magmatic processes, including the distribution of HVL bodies, 
exhibit significant along-strike variations that cannot be fully 
addressed in a 2-D framework. To overcome this limitation, fu-
ture research should employ 3-D numerical modelling, allowing 
for a more comprehensive assessment of spatial variations and 
facilitating direct comparisons with observed HVLs along the 
SCS margin. Addressing these uncertainties in future studies 
will enhance the robustness of numerical predictions and im-
prove our ability to reconstruct the geodynamic evolution of 
passive margins.

6   |   Conclusion

The numerical modelling presented in this study provides valu-
able insights into the processes governing crustal melting and 
the formation of HVLs in magma-intermediate margins, exem-
plified by the SCS margin. The models highlight the critical role 
of preferential lithospheric mantle removal in facilitating crustal 
melting by enabling sufficient heat transfer from the upwelling 
asthenosphere. The resulting melts accumulate beneath the 
thinned crust, forming layers parallel to the Moho, and exhibit 
a younger-oceanward age progression due to the progressive ex-
posure of the crust to the hot asthenosphere during rifting. The 
extent and distribution of crustal melts are shown to be influ-
enced by both extension velocity and crustal rheology.
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Comparison of modelling results with seismic observations from 
the SCS margin supports the predictions of models, demon-
strating the presence of crustal melts beneath thinned crust 
(< 20 km) and a similar age progression. The models also quan-
tify the contribution of crustal melts to HVLs, suggesting crustal 
melts account for approximately 15%–30%, with the remainder 
attributed to asthenospheric magma.
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