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Abstract The distribution of the Late Mesozoic volcanic arc in the South China Sea (SCS) continental
margin has long been a controversial topic due to its significance in understanding the transition
mechanism of a margin from subduction to extension. Here a comprehensive analysis was conducted in the
margin using reprocessed magnetic data, newly collected drilling/dredging samples, depositional
environment, and deformation style inferred from multichannel seismic profiles to jointly constrain the
possible distribution of the Mesozoic volcanic arc. From the map of reduced-to-the-pole magnetic anomaly,
several high-positive magnetic anomaly belts can be discriminated, which cross the central Pearl River Mouth
Basin, extend southwestward to the Zhongsha (Macclesfield Bank) and Xisha Islands (Paracel Islands), and
distribute discontinuously around the southwest subbasin. Geophysical analysis shows that these belts have
similar amplitudes and magnetic depths to known volcanic arcs, such as the Luzon, Cagayan, and Sulu arcs.
Furthermore, the high-amplitude positive magnetic anomaly belts coincide with the distribution of Late
Mesozoic arc-like granites, intermediate rocks, and agglomerates, suggesting that the belts possibly
originated from the existence of Late Mesozoic volcanic arc. Accretion and compression environment located
in front of the inferred arc provides independent supports to our interpretation. Results indicate that the
southwest part of the arc is distributed on both sides of the southwest SCS subbasin, whereas the northeast
part remains nearly in its original location, further suggesting that the breakup locations for the SCS margin
might be the volcanic front/forearc in the northeast and the arc in the southwest during the opening of the
SCS basin.

1. Introduction

The South China Sea (SCS), which is bounded by the Eurasian, India, Australian, and the Philippine Sea plates,
is one of the largest marginal seas in the southeast margin of the Eurasian continent (Figure 1). Aside from the
oceanic basin, the SCS consists of two submarine continental margins, namely, the northern and southern
continental margins. Numerous studies have been conducted to investigate the Cenozoic tectonic evolution
of the SCS. These studies have reached a consensus that the SCS margin was passive and evolved from
continental rifting to seafloor spreading since the Early Cenozoic, resulting in several extensional basins, such
as the Pearl River Mouth Basin (PRMB), the Tainan Basin, and the Qiongdongnan Basin (e.g., S. Chen et al.,
1987; Gong et al., 1997; S. Li, Lin, et al., 1999; Ru & Pigott, 1986; J. Wu, 1994).

In comparison with the extensive investigations on the Cenozoic tectonic evolution of the SCS margins, the
Mesozoic tectonic setting is considerably less understood. Widespread onshore outcrops of the Late
Mesozoic granitic-volcanic rocks show that the SCS was once an active margin associated with Paleo-Pacific
subduction in the Late Mesozoic Yanshanian Period (180–66 Ma; J. Chen & Jahn, 1998; Gilder et al., 1996;
S. Sun et al., 1989; Zamoras & Matsuoka, 2001; X. Zhou & Li, 2000). The corresponding onshore magmatic
arc extends from the South China coastal line to the Indochina Peninsula, and several Late Cretaceous
back-arc sedimentary basins have developed landward of the arc (X. M. Zhou, Sun, et al., 2006; Figure 1).

In the northern SCS margin, a similar Mesozoic magmatic arc has been suggested and viewed as a submarine
elongation of the onshore arc based on geochemical and geophysical analyses (Figure 1; e.g., Xia & Huang,
2004; Yao et al., 1994; D. Zhou, Wang, et al., 2006). For example, the compositional characteristic analysis of
several drilling samples shows that the Late Mesozoic granitic rocks are of the I-type calc-alkaline series,
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and these samples lie within the volcanic arc field on the Rb-Y and Nb-Y diagrams, similar to those from the
onshore arc belt (P. L. Li, Liang, et al., 1999; Q. Yan et al., 2014). However, previous studies on the distribution
of the Mesozoic volcanic arc in the northern SCS margin are mostly inferred using geophysical data, such as
magnetic anomalies, due to the limited samples obtained offshore (Xia & Huang, 2004; Yao et al., 1994; D.
Zhou, Wang, et al., 2006).

From the magnetic anomaly map in the northern SCS margin, a wide zone of high-amplitude positive
magnetic anomaly (HPMA) starting approximately from the PRMB and extending southwestward to the
Zhongsha (Macclesfield Bank) and Xisha Islands (Paracel Islands) has been clearly recognized. However, the
origin of this zone has been controversial. Xia and Huang (2004) suggested that the high-amplitude zone
was generated by mafic-ultramafic rocks in the lower crust. J. B. Li and Jin (2008) viewed the zone as a
magmatic belt, which was formed by remelting of crust during collision between the Eurasian continental
fragments and the East Asia in the Late Cretaceous. Dai (1997) interpreted this HPMA zone as one part of
the onshore Mesozoic volcanism along the coast line of Fujian and Zhejiang provinces, which was then split
and pulled toward southeast due to Cenozoic extension. By comparing the characteristics of the

Figure 1. Schematic map for the distribution of the LateMesozoic granites, volcanic arc and back-arc sedimentary basins in
and around the SCS. NSM = northern SCSmargin; SSM = southern SCSmargin; SCSB = SCS basin; SW = southwest subbasin;
ZSI = Zhongsha Islands (Macclesfield bank); XSI = Xisha Island (Paracel Islands); PRMB = Pearl River Mouth Basin;
ZJN = Zhongjiannan Basin (Phu Khanh Basin); NST = Nansha Trough (northwest Palawan Trough); DSR = Dongsha Rise;
NW = northwest subbasin; SH = Sanshui Basin; QDN = Qiongdongnan Basin; TN = Tainan Basin; PY = Panyu Low Uplift.
Compiled after Hoa et al. (2008), Lan et al. (2003), Thuy et al. (2004), D. Zhou, Wang, et al. (2006), X. M. Zhou, Sun, et al.
(2006), and X. Zhou and Li (2000, and references therein).
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high-amplitude zone with the Luzon island arc and the well-known Mesozoic volcanic arc in the
Fujian-Zhejiang coastal line, it has also been suggested that the zone should be the Mesozoic volcanic arc
(Yao et al., 1994; D. Zhou, Wang, et al., 2006).

In summary, previous analyses have shown that the HPMA zone is associated with Mesozoic magmatic
activities, although the dynamics remain under debate. Whether the zone is caused by Mesozoic volcanic
arc or ultramafic rocks or by the remelting of crust in the Late Cretaceous demands additional constraints,
such as petrological evidence. Z. Wu et al. (2011) proposed that the belt represents the Mesozoic magmatic
rocks according to the drilling samples from the Dongsha Rise, which consists of arc-signature
intermediate-acidic igneous rocks. However, no further petrological effort has been used to constrain the
origin of the high-amplitude belt. As more available petrologic and geochronologic data are reported,
comprehensive analysis is necessary to confirm whether the high-amplitude magnetic anomaly belt is
consistent with the Mesozoic volcanic arc in the northern SCS margin.

The southern SCS continental margin (e.g., the NanSha [Dangerous Grounds] and the Reed Bank) once
occupied a predrift position contiguous with the South China block, having a similar geodynamic setting
to the South China block in the Mesozoic era (Briais et al., 1993; Ding et al., 2013; Franke et al., 2014; Hall,
2002; Taylor & Hayes, 1983; Yao, 1996; D. Zhou et al., 2005). The southern SCS continental margin is a
convergent margin with an Andean-type volcanic arc from the Jurassic to Cretaceous based on stratigraphic
and tectonic evidence from the North Palawan Island (Holloway, 1982). Granite samples dredged from the
Dangerous Grounds fall in the fields of arc-like area with typical I-type characteristics in the trace element
and isotopic characteristics, thereby providing direct evidence for the existence of Mesozoic volcanic arc in
the southern SCS margin (Q. Yan et al., 2010). However, the distribution of the Mesozoic volcanic arc in the
southern SCS margin, and its relationship with that of the northern continental margin remains unclear.
The best way to identify the spatial distribution of the Mesozoic volcanic arc in the south is magnetic anomaly
analysis supplemented with petrological constraints using the drilled/dredged samples.

In this study, we reprocess themagnetic data to delineate the distribution of high-amplitude zones in the SCS
margin. By analyzing the magnetic characteristics and newly collected petrological evidence, we further
investigate whether the high-amplitude magnetic anomaly belt is consistent with the Mesozoic volcanic
arc and infer the possible spatial distribution of the Mesozoic volcanic arc in the SCS margin. In addition,
evidences from depositional environment and seismic profiles provide independent support to our interpre-
tation of volcanic arc. Moreover, the tectonic implications of the Mesozoic volcanic arc to the evolution of the
SCS basin are discussed.

2. Geological Setting

The SCS basin is a marginal sea located at the west of the Pacific, trending NE-SW (Figure 1). Its geological
boundaries are characterized by subduction in the east, extension in the north, strike slip in the west, and
collision in the south. According to the ages and directions of magnetic lineation in the basin, numerous
works deduced that the SCS basins have experienced several opening episodes from 33 to 16 Ma during
the Oligocene and Early Miocene (Briais et al., 1993; Hsu et al., 2004; C. F. Li, Xu, et al., 2014; Taylor & Hayes,
1983; Xu et al., 2012 etc.). Spreading first occurred in the northeast and led to the formation of the eastern
subbasin of SCS at approximately 33 Ma (C. Li et al., 2015). After ~25.5 Ma, the spreading center migrated
southward and the opening of the northwest SCS subbasin stopped. Since ~23 Ma, the spreading event that
jumped from the north kept propagating southward, leading to the formation of the southwest subbasin of
the SCS (Briais et al., 1993). As a result, the Dangerous Grounds and the Reed Bank were separated from the
continental South China block, moved in the southeast direction, and finally collided with Borneo in the
Middle Miocene (Clift et al., 2008; Holloway, 1982; Hutchison, 1996; Jin & Li, 2000; Taylor & Hayes, 1983).

The northern continental margin of the SCS lies between the South China Fold Belt and the continent-ocean
transition (COT) and includes a series of rifted basins (e.g., Sanshui, Pearl River Mouth, Southwest Taiwan, and
Qiongdongnan Basins; e.g., Clift & Lin, 2001; Hsu et al., 2004; X. Xie et al., 2006). The southern SCS continental
margin is a thinned crust and has drifted from the Eurasian plate during the opening of the SCS basin
(Hamilton, 1979). NE trending Cenozoic basins are widely distributed in the Dangerous Grounds, such as
the Nanwei and Reed Bank Basin. A belt of NW thrust sheets developed in the Northwest Palawan Trough,
which is considered to be caused by the subduction of the proto-SCS crust beneath Borneo Island (Hall,
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2002; Hutchison, 2004). In the Collision-Extrusion model, instead of collision with Borneo, the Dangerous
Grounds and the Reed Bank were extruded along the Red River Fault due to the collision between India
and Asia (Briais et al., 1993; Cullen et al., 2010; Hall et al., 2008; Replumaz & Tapponnier, 2003; Tapponnier
et al., 1990, 1986, 1982).

In the Mesozoic, the SCS basin did not exist nor did the adjacent SCS margins located at the Eurasian
continental mainland (C. F. Li et al., 2008). According to the onland research, from the mid-Jurassic to Late
Cretaceous, the Paleo-Pacific plate was subducting northwestward beneath the southeast Eurasian plate,
and consequently, a series of NE trending Mesozoic volcanism developed (e.g., Lapierre et al., 1997; Z. X. Li
& Li, 2007; Sewell & Campbell, 1997; X. Zhou & Li, 2000). Igneous rocks consist of widely exposed granites,
rhyolites, gabbros, basalts, diorite, and andesite and extend from Japan through Southeast China into
Southern Vietnam (Nguyen, Satir, Siebel, & Chen, 2004; Nguyen, Satir, Siebel, Vennemann, & Long, 2004;
Phan, 1992).

In the Southeastern China area, the Late Mesozoic magmatism extends from Northeast China to Hainan
Island, parallel to the South China coastal line. On the mid-ocean ridge basalt-normalized incompatible trace
element plot, the K1 basalts show characteristics of Nb-Ta depletion and large ion lithophile element
enrichments, indicating their origin of subduction-related wet mantle wedge melting and further showing
that K1 basalts are genetically of the volcanic arc type, which are derived from active continental margin
magmatism (McCulloch & Gamble, 1991; X. M. Zhou, Sun, et al., 2006). In combination with the coexisting
A-type alkaline and microlitic granites, mafic and felsic dikes, previous studies have delineated the K1 conti-
nental margin as magmatic arc systems in the coastal region of the Southeastern China, trending NE-WS (e.g.,
Campbell & Sewell, 1997; Jahn et al., 1976; Niu, 2005; D. Z. Wang & Zhou, 2002; F. Y. Wu et al., 2005; Q. Yan
et al., 2014; X. Zhou & Li, 2000; Figure 1). In comparison, the K2 tholeiitic basalts interlayered with red beds
do not show Nb-Ta depletion, which represent the development of back-arc extensional basins in the interior
of Southeast China (X. M. Zhou, Sun, et al., 2006).

In the Dalat zone of the Indochina Peninsula, Southern Vietnam, Mesozoic plutonic and contemporary
volcanic rocks have been widely explored and interpreted as subduction-related products (Taylor & Hayes,
1983). Ages obtained from different radiometric methods indicate that magmatism in the Dalat zone is from
theMiddle to Late Cretaceous (Nguyen, Satir, Siebel, & Chen, 2004; Nguyen, Satir, Siebel, Vennemann, & Long,
2004). Moreover, granitoid samples in the zone are of I-type characteristics and low ratios of Rb/Cs, which
belong to high-K calc-alkaline series, which are in favor of volcanic arc origin (Nguyen, Satir, Siebel, &
Chen, 2004; Nguyen, Satir, Siebel, Vennemann, & Long, 2004). These arc-related igneous rocks, together with
the Mesozoic magmatism activities in the SCS margin, comprise a continuous Andean-type volcanic arc in
East Asia (Huang, 1963; Jahn et al., 1976; Z. X. Li & Li, 2007; Nguyen, Satir, Siebel, & Chen, 2004; Nguyen,
Satir, Siebel, Vennemann, & Long, 2004; Taylor & Hayes, 1983).

After the Late Cretaceous, a major tectonic event terminated the Paleo-Pacific subduction. Scientists have
inferred that the subducting plate encountered rollback process (Lapierre et al., 1997; Z. X. Li & Li, 2007).
Following this tectonic event, the southeast Eurasian continent has transformed from active to passive
continental margin. Consequently, the SCS region encompassed a broad spectrum of tectonic processes,
such as rifting, seafloor spreading, subduction, and collision (e.g., Taiwan collision zone; P. Wang, 2012).

3. Data and Methods
3.1. Magnetic Data and Processing Methods

The total field magnetic data are mainly obtained from the National Oceanic and Atmospheric Administration
and the Magnetic Anomaly Map of East Asia compiled by the Geological Survey of Japan (Maus et al., 2007;
Maus et al., 2009). The SCSmargin is located at low latitudes; hence, induced polarization is shifted laterally by
inclination. Thus, the observed magnetic fields may bias their sources, making the magnetic interpretation
difficult. To overcome the dipolar nature of the geomagnetic field and center the peaks of magnetic
anomalies over their sources, we reprocess the total magnetic field data using the technique of variable
magnetization to obtain the reduced-to-the-pole (RTP) magnetic anomalies (Figure 2). The technique of
variable magnetization is derived from the Poisson’s equation. Supposing that the remnant magnetization
can be neglected, the gridded total field magnetic data are reduced to the pole by varying the directions
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of magnetic inclination over the survey area. The method of variable magnetization has been already tested
by synthetic and field magnetic anomaly data (L. Zhang, Zhang, & Wang, 2014). The process yields result and
coincides with known source parameters.

Upward continuation of the RTP anomaly is conducted to analyze the characteristics of the magnetic
anomaly. It accentuates low-frequency anomalies caused by deep sources and suppresses high-frequency
anomalies due to near-surface features using fast Fourier transform technique (Blakely, 1995). Upward
continuation provides a powerful tool for separating structures from different depths and obtaining the most
likely geometrical shape of deep structure.

Power spectrum analysis is also conducted to determine the statistical depth to the tops of the magnetic
sources. A typical power spectrum for the magnetic data consists of a deep source, shallow source
component, and noise components (Figure 3). The power spectrum of the magnetic field decreases with
depth to source t by an exponential factor (�2tk), where k is the wave number. Thus, if the depth factor
dominates the shape of the power spectrum, then the logarithmic power spectrum is directly proportional
to �2tk, and the source depth can be calculated from the slope of the log power spectrum (Spector &
Grant, 1970). The relationship between the source depth and the power spectrum can be written as

Figure 2. Map of reduced-to-the-pole magnetic anomaly (a) and upward continuation to elevation of (b) 20 and (c) 40 km
for the SCS. Straight lines L1–L5 in Figure 2a are sampled profiles used to calculate their log power spectra (Figure 3), and
straight line OBS2006-3 is used to conduct magnetic modeling (Figure 8). Shadow areas denote the distribution of the Late
Mesozoic volcanic arc. Denotations are the same as those in Figure 1. SCSB = SCS basin; SSM = southern SCS margin;
PRMB = Pearl River Mouth Basin; XSI = Xisha Island (Paracel Islands); ZJN = Zhongjiannan Basin (Phu Khanh Basin);
ZSI = Zhongsha Islands (Macclesfield bank).
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dj j ¼ � 1
4π

logE1 � logE2ð Þ
k1 � k2

; (1)

where the source depth d depends on the power spectrum (E1, E2) and the wave numbers (k1, k2).

3.2. Drilling and Dredging Data

The drilling and dredging data are collected from the China National Offshore Oil Corporation (CNOOC) and
the Guangzhou Marine Geological Survey (GMGS), as well as published literature. Nearly 100 drilling bore-
holes have reached the pre-Cenozoic basement in the north and south of the SCS margin. The Late
Mesozoic igneous rocks were also dredged from the SCS margins. These data provide important petrological
evidence. More information about the samples, such as location, age, and lithology of rocks, are shown in
Table 1 and Figure 4.

3.3. Seismic Data

A large number of seismic experiments have been conducted in the continental margins since 2006 by
CNOOC, especially in the northern SCS. The profiles ec00-1747 and 07ns-6 have been used in this study.
These profiles have been conducted with air gun volume larger than 3,000 cubic inch, and the shot point
interval is 12.5 m. The data are collected by a 7.5-km-long streamer with 960 channels. The dominant

Figure 3. Power spectrum of five profiles across the high-amplitude anomaly belts. The depth estimate is a plot of the five-
point depth data from the power spectrum. Locations of these profiles are shown in Figure 2a.
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Table 1
Location, Age, and Lithology of the Mesozoic Intermediate, Agglomerate, and Felsic Rocks

No. Well Longitude Latitude Depth (m) Age (Ma) Lithology Reference

1 HZ33-2-2 115.68 21.06 2,455.5 Mesozoic Andesite 1
2 HZ27-1-1 115.48 21.29 3,052 Mesozoic Andesite 1
3 LF13-2-1 116.15 21.56 3,280 Mesozoic Andesite 1
4 HJ32-1-1 117.22 22.05 1,695 Mesozoic Agglomerate 1
5 XJ34-3-1 114.5 20.96 3,296 78.5 ± 3.2 Agglomerate 1
6 BD6-1-1 111.85 18.93 2,133 87 Agglomerate 1
7 HZ25-1-1X 115.12 21.13 3,041 99.8 ± 1.53 Agglomerate 1,8
8 LH11-1-2 115.85 20.74 1,799.5 Mesozoic Skomerite 1
9 HZ21-1-1 115.42 21.31 2,779 105 Diorite 1
10 LH21-1-1 115.36 20.43 2,779 Mesozoic Diorite 1
11 LH19-4-1 115.14 20.33 3,068.5 Mesozoic Diorite 1
12 PY24-1-1 114.92 20.42 4,391 42.5 Diorite 1
13 S2-1-1 112.23 19.54 3,641.2 118 Granite 8
14 AY-1X 108.47 5.62 2,811 54.6 ± 2.7 Agglomerate 7
15 28-a-1x 106.87 7.4 1,504 Pre-R Quartz diorite 2
16 Sampaguita-1 116.52 10.44 3,353 K1 Quartz diorite 4
17 AS-1X 108.42 6.85 1,728 129 ± 7 Diorite 7
18 SO27-24 115.83 9.88 * T2 Diorite 6
19 SO23-23 115.87 9.9 * T3-J1 Olivine-gabbro rhyolite 6
20 DUA-1x 108.43 7.44 4013 K Granite 2
21 DUA 12-B-1X 108.27 7.50 3889 * Granite 2
22 15-C-1X 108.30 9.97 3,276 Pre-R Granite 2
23 Dragonax 15C 108.36 10.42 * Yanshanian Granite 12
24 DH-3 108.64 8.45 * Pre-R Granodiorite 2
25 DH-1 108.69 8.49 3352 109 ± 5 Granite 2
26 Cipta-b 108.55 6.30 3274 Pre-R Granodiorite 2
27 AT-1X 108.65 5.49 1768 80 ± 2.4 Biotite granite 2
28 AP-1X 109.62 5.52 4199 79.3 Granodiorite 2
29 12-C-1X 108.02 7.52 3,657 Pre-R Granite 2
30 04-B-2X 108.92 8.63 2593 * Volcanic rock 2
31 04-B-1X 108.99 8.63 2442 K1 Volcanic rock 2, 11
32 ZHU5 114.5 20.97 3,231 75 Granodiorite-porphyry 1,8
33 LF35-1-1 116.7 21.02 1,030 K2 Rhyolite 1,3
34 YJ21-1-1 112.3 20.45 1,648–1,858 51.8 ± 8.3 Rhyolite 1
35 WC8-2-1 112.37 19.75 2,628 Mesozoic Rhyolite porphyry 1
36 LF22-1-1 116.63 21.45 1,726 Mesozoic Granite 1
37 HZ10-1-1 115.65 21.75 2,763 Mesozoic Granite 1
38 HZ22-1-1 115.63 21.3 2,798.5 Mesozoic Granite 1
39 ZHU2 114.51 21.34 2,372 70.5 Coarse grained 1,8
40 XJ24-1-1X 114.98 21.31 3,760 84 Granite 1,8
41 XJ30-2-1X 114.97 21.23 3,577 Mesozoic Granite 1
42 XJ36-3-1X 114.9 21.1 3,725 Mesozoic Granodiorite 1
43 HZ32-2-1 115.17 21.13 2,718 88.5 ± 3.6 Granite 1
44 HZ32-3-1 115.22 21.12 2,614 Mesozoic Granite 1
45 HZ26-1-1 115.25 21.14 2,470.5 Mesozoic Granite 1
46 HZ26-1-2 115.27 21.13 2,591 Mesozoic Granite 1
47 HZ33-1-1 115.35 21.1 2,610 86.2~93.2 Granite 1
48 HZ34-1-1 115.55 21.02 2,300 Mesozoic Granite 1
49 LH11-2-1 115.74 20.7 1,879 90.62 ± 1.49 Granite 1
50 DS7-1-1 116.11 20.64 1,333 Mesozoic Granite 1
51 LH18-1-1 115.93 20.55 1,838 Mesozoic Granite 1
52 LH18-2-1 115.95 20.45 1,864 Mesozoic Granite 1
53 PY4-1-1 114.6 20.82 3,139 130.0 ± 5.0 Granite 1,8
54 PY3-1-1 114.43 20.93 3,171 90.7 ± 3.3 Granite 1,8
55 PY14-5-1 114.2 20.62 3,788 Mesozoic Granite 1
56 PY15-1-1 114.41 20.52 4,401.5 Mesozoic Granite 1
57 PY20-1-1 114.23 20.37 3,856 Mesozoic Biotite granite 1
58 EP18-1-1A 113.98 20.49 3,426 100.5 ± 1.7 Granite 1
59 ZHU1 113.57 21.15 1,817.9 73.0~76.0 Coarse-grained granite 1,8
60 ZHU4 114.27 21.19 3,203.5 Mesozoic Coarse-grained biotite 1,8
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frequency of the signals is 75 Hz, equivalent to a vertical resolution of 8–10 m. The reflection data have been
then processed by CNOOC with a standard procedure, including filtering, multiple suppressing, stacking, and
time migration.

4. Results
4.1. Characteristics of Magnetic Anomalies in the SCS Margin

Figure 2a shows the map of RTP magnetic anomaly for the SCS region constructed by the methods described
earlier. Inside the SCS basin, high-frequency intercalated magnetic lineations are discriminated with values
up to 200 nT. At the same time, several other wide magnetic anomaly belts with amplitude up to ~220 nT
are clearly delineated. Most of them correspond to well-known volcanic arcs, such as the Luzon, Cagayan,
and Sulu arcs (Figure 2a). Similar to other arcs, these volcanic arcs are characterized by HPMA, which is
believed to be common in subduction zones due to high magnetic susceptibility for the volcanic rocks
(Kushiro, 1974; Tatsumi, 1982; D. Zhou, Wang, et al., 2006). For example, the Luzon arc shows distinct
magnetic anomaly amplitude of ~220 nT (Figure 2a). Northeast to Borneo, two distinct HPMA belts striking
SW-NE correspond to the Cagayan and Sulu arcs. The anomaly amplitudes of the Cagayan and Sulu arcs
are similar to those of the Luzon arc. In addition to the volcanic arcs, several short HPMA belts are identified
in the SCS basin. They are striking SW-NE, approximately parallel to the spreading axis, and represent the
magnetic stripes in the SCS basin. Such features are consistent with those in the previous findings from
the total magnetic field (C. F. Li et al., 2008, 2010).

In addition to the known features, several other prominent magnetic anomaly belts with similar amplitude to
that of the Luzon, Cagayan, and Sulu arcs are discriminated. They are striking NE-SW, are distributed on both
sides of the SCS basin, and do not correspond to any known structures in the region (Figure 2a). In the
northern SCS continental margin, the HPMA belts cross the Panyu Low Uplift and Dongsha Uplift and extend
southwestward to Zhongsha Islands. Previous studies have interpreted the belts in the northern SCS margin

Table 1 (continued)

No. Well Longitude Latitude Depth (m) Age (Ma) Lithology Reference

61 HZ35-1-1 115.69 21.05 2,212.5 105 Granite 1
62 EP25-1-1 113.14 20.25 3,164 Mesozoic Granite 1
63 ZHU7 114.37 20.95 * Mesozoic Granite 1
64 HZ32-2-2 115.68 21.05 2,783.5 Mesozoic Granite 1
65 QH36-2-1 111.85 19.13 1,251 Mesozoic Granite 1, 11
66 XJ30-1-1X 114.95 21.2 3,152 Mesozoic Granodiorite 1
67 LF2-1A 116.23 22.0 2,480–2,483 100.38 ± 1.46 Granite 8
68 LF13-1-1 116.04 21.60 3,193 * Cataclastic granite 1
69 XJ17-3-1 114.69 21.50 2,122–2,124 72.98 ± 2.8 Granite 8
70 XJ24-3-1A 114.91 21.38 4,318–4,319 98 Granite 8
71 HZ25-2-1X 115.02 21.20 3,176 99.8 ± 1.53 Granite 1
72 HZ32-3-1 115.22 21.12 2,614 Mesozoic Granite 1
73 LH1-1-1X 115.12 20.87 2,572.5 43.15 ± 0.7 Granite 1
74 LH11-1-1A 115.74 120.7 1,836.5 90.62 ± 1.49 Granite 1
75 PY21-3-1 114.38 20.42 4,018–4,019 89.83 ± 1.32 Granite 8
76 PY27-1-1 114.51 20.02 3,607–3,609 118.9 ± 2.1 Granite 8
77 KP9-1-1 113.59 19.54 1,662–1,774 153 ± 6 Granite 8
78 XiYong 112.4 16.25 1,384.6 144–158 Monzogranite Diorite 1,10
79 ZhongSha 114.57 16.21 * 126.63 ± 2.02 Granite 9

119.32 ± 1.91
80 S08-32-1 114.08 11.47 Dredging 153.6 ± 0.3 Monzogranite 5
81 S08-18-2 114.93 11.78 Dredging 159.1 ± 1.6 Tonalite 5
82 So23or27 116.58 12.1 Dredging 146 Amphibolite 5
83 HZ28-2-1 116.65 22.43 3,942–3,943.6 109.3 ± 2.4 Granite 8
84 Y26-1-1 112.25 19.98 1,700–1,702 89.2 ± 1.58 Granite 8

Note. 1. CNOOC; 2. Wu and Yang (1994); 3. Shao et al. (2007); 4. Taylor and Hayes (1980); 5. Q. Yan et al. (2008); 6. Kudrass et al. (1986); 7. Hutchison (1989); 8. P. L. Li
et al. (1998); and 9. Jin (1989); 10. Xiu et al. (2016); 11. GMGS; 12. Areshev et al. (1992). All the drilling/dredging locations are shown in Figure 4. Asterisks (*) means
no data available.
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as the volcanic arc associated with Mesozoic subduction (e.g., Z. Wu et al.,
2011; D. Zhou, Wang, et al., 2006). Further southwestward, several other
broken positive HPMA belts are distributed around the southwest
subbasin. In Comparison with the belts in the north, the anomaly
amplitude in the southwest is slightly smaller and less continuous. The
magnetic belts in the northern SCS margin have been interpreted as the
volcanic arc associated with Mesozoic subduction. To date, no relevant
interpretation on the positive high-amplitude anomalies in the southwest
SCS continental margin is available.

To determine the most likely geometrical shape of the high-amplitude
anomalies, we perform upward continuation of the RTPmagnetic anomaly
to suppress local, short-wavelength, and generally shallow source
anomalies. The long-wavelength and generally deep source anomalies
are well preserved after processing. For example, the distinct features of
the magnetic anomalies in the SCS basin are associated with the reversal
of the magnetic field during the opening of the SCS basin. Therefore, they
likely originate from shallow sources (e.g., oceanic crust). From the upward
continuation of the RTP magnetic anomaly by 20 and 40 km, the
short-wavelength anomalies in the SCS basin and margins are significantly
subdued (Figures 2b and 2c). As shown in Figure 2c, with further upward
continuation of the RTP magnetic anomaly by 40 km, the
short-wavelength anomalies in the SCS basin are largely removed, which
indicate that these signals are indeed from shallow sources (e.g., oceanic
crust). By contrast, the HPMA belts in the northern and southern SCS
margins, as well as those associated with the Luzon, Cagayan, and Sulu
arcs, still clearly remain with similar amplitude of ~220 nT. Therefore, these
signals mostly have long wavelengths, likely caused by deep source
geological bodies.

Volcanic arc magmas originate from partial melting of the overriding mantle in the subduction zone and
accumulate at the continental crust interior, forming large-scale magmatic arc roots (Currie et al., 2015).
For example, a thick high-velocity layer is imaged in the lower crust in the northern SCS continental shelf
and viewed as a remnant arc (Wan et al., 2017). We note that previous studies also viewed the high-velocity
layer as underplating during continental breakup (e.g., Kido et al., 2001; Nissen et al., 1995). However, their
interpretations aimed at the high-velocity layer in the COT zone of the northeastern SCS but not the
layer in the upper slope and the continental shelf (e.g., Nissen et al., 1995; P. Yan et al., 2001). The values of
Vp/Vs in the continental shelf are smaller than that in the COT, also denoting a possibility of different origin.
Additionally, the Cenozoic igneous rocks scatters across the COT (P. Yan et al., 2006; P. Yan & Liu, 2004;
Q. Zhang, Wu, et al., 2014), while none occurs in the upper slope and shelf of the northern SCS. Another
important reason is that the underplating is an important process for crustal formation because the addition
of material provides a nontectonic way for the crust to grow and thicken (Thybo & Artemieva, 2013).
However, there is no obvious crustal thickening in the zone of high seismic velocity (e.g., Kido et al., 2001;
Nissen et al., 1995; Shi et al., 2005; P. Yan et al., 2001). To constrain the source depths of the HPMA belts,
we extract raw data along five profiles from the RTP map and calculate their log power spectrum using fast
Fourier transform (the lines shown in Figure 2a). Profiles 2 and 3 are in the southern SCS margin, whereas
profiles 4 and 5 are in the northern SCS margin. For comparison, we also select one more profile (L1) across
the Cagayan arc to obtain its log power spectrum. All of the five profiles coincide with the HPMA belts. The
power spectrum curves are presented by log (power) versus the wave number. Magnetic source depths can
be further estimated by calculating the slope gradient of the power spectrum curve.

The depth to a statistical ensemble of sources is determined by five-point averages of the slope of the power
spectrum curve. As shown in Figure 3, three components of the power spectrum curve are calculated.
Upward continuation demonstrates that the HPMA belts are associated with long wavelength. Therefore,
we are only interested in the low-wave number domain, which represents approximate depths of deep
magnetic sources. The results show that the average depth for the deep source of the Cagayan arc is

Figure 4. Locations of the drilling/dredging data in the South China Seamar-
gin. The names for all drilling/dredging were replaced with numbers. See
Table 1 for full name, longitude, latitude, age, and lithology. SCSB = South
China Sea basin.
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approximately 21 km (Figure 3a). The finding reflects that the deep magnetic source lies at a lower crustal
level, coinciding with the depth of magmatic arc roots (Currie et al., 2015). Similarly, the curves from the
northern and southern SCS margin have no clear difference in the magnetic frequency, and the estimated
average source depths are of 18–24 km. It appears that, to the northern and southern SCS margins, the deep
sources of the HPMA belts likely originate from the same geological bodies, such as the magmatic arc roots in
the lower crust. Thus, the HPMA belts in the SCS margin might be remnant Mesozoic volcanic arc, which are
distributed across the PRMB and extend southwestward to the Zhongsha (Macclesfield bank) and Xisha
Islands (Paracel Islands) in the north. The belt is discontinuously distributed around the southwest subbasin
in the south. Petrological evidence is collected to further constrain the origin of these HPMA belts.

4.2. Petrological Evidence for Constraining the Origin of HPMA Belts

In the northern SCS margin, more than 100 wells have been drilled, and the rock types include granites,
granodiorites, agglomerate, andesite, diorite, skomerite, rhyolites, and metamorphic rocks (P. L. Li, Liang,
et al., 1999). More than 20 of these wells encountered the pre-Cenozoic basement, thereby providing
unprecedented petrologic evidence to constrain the geological features of the basement. A large portion
of the basement consist of Late Mesozoic intermediate to silicic igneous rocks with ages ranging from
~153 to ~70.5 Ma, with an average of 100 Ma (e.g., HF28-2-1 dating to 109.25 Ma, EP18-1-1A dating to
100.5 Ma, and SH2-1-1 dating to 118 Ma; Table 1, and references therein). All the drilling and dredging data
are collected from CNOOC and Guangzhou Marine Geological Survey, as well as published literature, as
shown in Table 1 and Figure 4.

According to petrological, geochemical, and geochronological analyses, the compositional characteristics of
the Late Mesozoic granites (e.g., PY4-1-1, PY27-1-1, XJ17-3-1, LF13-1-1, HF28-2-1, LH11-1-1A, XJ36-3-1X,
XJ24-3-1AX, XJ24-1-1X, XJ30-1-1, HZ35-1-1, LF22-1-4, and HZ26-1-1) are dominated by I-type calc-alkaline
series, and the granites lie within the volcanic arc field on the Rb-Y + Nb and Nb-Y diagrams, similar to those
from island or continental marginal arcs (P. L. Li, Liang, et al., 1999; Q. Yan et al., 2014). In addition, nine
boreholes (e.g., HZ33-2-2, HZ27-1-1, LF13-2-1, and XiYong-1) encountered Late Cretaceous intermediate
rocks (e.g., andesite and diorite) and agglomerates. The evolution of intermediate rocks (especially andesite)
has been described as derivative magma produced by the fractional crystallization of basaltic magma, which
was derived by partial melting of mantle peridotite due to hydration by water released from the subducted
oceanic plate (And & Kinzler, 2014; Fitton, 1971; Marsh & Carmichael, 1974). Agglomerates are igneous rocks
that are ejected during explosive volcanic eruptions and are usually stored well in situ (McBirney, 1980).
Therefore, the intermediate rocks and agglomerates are usually regarded as an indicator of volcanic arc.

The southern SCS margin, which drifted from the South China block during the opening of the SCS in the
Cenozoic, has similar geodynamic setting to the Southeastern China and the northern SCS margin during
the Mesozoic (Hall, 2002). Several samples drilled/dredged from the southern SCS margin contain granites,
tonalite, monzogranite, rhyolite, diorite, and amphibolite with ages of the Late Mesozoic (Kudrass et al.,
1986; Q. Yan et al., 2008). The dating results are consistent with those for Late Mesozoic igneous activities
in the PRMB and Eastern China (John, 1990; X. H. Li, 2000; Z. X. Li & Li, 2007; F. Y. Wu et al., 2005; X. Zhou &
Li, 2000). Intermediate rock and agglomerate obtained from SO27-24, AS-1X, AY-1X, 28-a-1x, and
Sampaguita-1 support the existence of Mesozoic volcanic arc in the southern SCS margin. More details,
including sampling location, lithology, and geochronology of rock samples, are listed in Table 1.
Meanwhile, granitic samples from SO8-18 and SO8-32 are plotted in the fields of arc-like signature with typi-
cal I-type characteristics by applying trace element and isotopic characteristic analysis (Q. Yan et al., 2010).

The temporal-spatial distribution of Mesozoic arc-like signature granites, intermediate rocks, and
agglomerates in the SCSmargin is summarized in Figure 5. Most of these rocks are distributed in the northern
SCS margin and coincide with the HPMA belts, supporting that the belts in the north originated from the
existence of Mesozoic volcanic arc. In the southern SCS margin, small and less continuous belts are also
consistent with the petrologic evidence, except the belts in the Zhongjiannan Basin (Phu Khanh Basin) and
the Nansha Trough (NW Palawan Trough). Although these two belts have not been verified due to the lack
of drilled/dredged samples, we also infer that the two belts are caused by Mesozoic volcanic arc because they
have similar geophysical characteristics to others. Of course, our interpretation on the two belts should be
further confirmed in the future if more drilling/dredging data are available. Based on aforementioned
analysis, we suggest that the source of the HPMA belts in the SCS margin is of Mesozoic volcanic magmatism.
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4.3. Additional Evidence From the Mesozoic Depositional Environment and Seismic Interpretation

The well LF35-1-1 was drilled in the Chaoshan Depression, northern SCS margin. The 2,187- to 2,388-m
interval of well LF35-1-1 contains a dominant combination of Cyathdites and Classopollis, which are two of
the most unusual fossil pollen types and indicate a shallow-water shelf environment (G. X. Wu et al., 2007;
G. Q. Xu et al., 2013). These two fossil pollens were widely distributed in middle Jurassic deposits and died
out at the beginning of the Paleogene, indicating an age of Middle Jurassic (Vakhrameyev, 1983). During
the Late Jurassic, the northern SCS margin was in a deep-sea environment where radiolarians and silicious
radiolarian mudstone was developed in the 1,725- to 1,887-m interval of LF35-1-1, with ages dating to the
Late Jurassic to Early Cretaceous (G. X. Wu et al., 2007; G. Q. Xu et al., 2013). These results suggest that parts
of the northern SCS continental margin has transformed from shallow-water depositional environment to
deep-sea environment around the Middle Jurassic and back to shallow-water till terrestrial in the Late
Cretaceous (Shao et al., 2007). In addition, at least 18 marine and transitional clastic samples with ages of
Late Jurassic to Early Cretaceous were encountered in the Tainan basin (D. Zhou, 2002). In combination with
the interpretation of seismic profiles, previous studies delineated the distribution of Late Jurassic to Early
Cretaceous marine facies in the northern SCS margin, which extends from Taiwan and westward to
Chaoshan Depression and Dongsha Uplift (P. L. Li et al., 1998; D. Zhou et al., 2004; Figure 6). Furthermore,
an early Late Cretaceous Yuli high-pressure and low-temperature metamorphic belt filled by marine facies
was found across the central Taiwan orogeny. The belt consists of black and green schists and originates from
trench-fill turbidites, basalts, and basaltic tuff (Beyssac et al., 2007; Ho, 1986). This finding suggests that the
belt and/or part of the marine facies strata are possibly the result of the accretion of oceanic material
(Jahn et al., 1986).

In the Reed Bank and Dangerous Grounds, the Lower Cretaceous neritic clastic rocks (e.g., sandstone and
siltstone) have been found in the Sampaguita-1 (Taylor & Hayes, 1980), Sampaguita-2, Sampaguita-3,
Kalamansi-1, Reed Bank-A1 (Schlüter et al., 1996a), and Reed Bank-3A (Soeparjadi et al., 1985), indicating a
typical neritic depositional environment for the southern SCS continent in Mesozoic (Figure 6). Meantime,
Sales et al. (1997) concluded that the Early Cretaceous to Jurassic marine facies was widely distributed in

Figure 5. Map showing the possible spatial distribution of Mesozoic volcanic arc in the present-day South China Sea mar-
gin according to the Late Mesozoic igneous rocks and reduced-to-the-pole magnetic anomaly upward continued to 40 km.
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the Reed Bank based on the drilling-confined seismic profile interpretation (Figure 6). A belt of Mesozoic
subduction-accretion complexes exists in the North Palawan and Calamian Island and mainly consists of
cherts and turbidites (Isozaki et al., 1988; Marquez et al., 2006; Tumanda, 1991). Combining with the
distribution of Mesozoic subduction-accretion complexes belt, the Early Cretaceous to Jurassic marine
facies (including neritic depositional environment) may represent an accretion process in the Late
Mesozoic, which is considered to be related to the Paleo-Pacific subduction (Yumul, 2007; D.
Zhou et al., 2008).

Seismic profiles collected from CNOOC and literature indicate a compression environment in the area of
marine facies in the Late Mesozoic. For example, profile ec00-1747 crosses the drilling well LF35-1-1 in the
northern SCS margin (Figure 6), and the Tg interface is viewed as the boundary between the Cenozoic and
Mesozoic strata with an age of approximately 65 Ma. Below Tg, well-developed Mesozoic strata are found.
Scientists have discriminated several paleosequence boundaries, such as Tm18, Tm20 (K2), Tm30 (K1),
Tm60 (J1), and Tm80 (T3) constrained by well LF35-1-1 (Figure 7a). The Mesozoic strata are clearly folded with
several thrust faults cutting through the sequence boundaries Tm30, Tm60, and Tm80, indicating that the
stress regime was compressive during the Mesozoic Era (e.g., C. F. Li et al., 2008; Q. Yan et al., 2014).
Another seismic reflection profile 07ns-6 is also found across the Reed Bank (Figure 7b). The boundary
between Cenozoic and Mesozoic, Tg, and several Mesozoic sequence boundaries is clearly identified along
this profile. In addition, pre-Cenozoic compressive anticlines and thrust faults are identified beneath Tg (M.
Zhou et al., 2013).

Figure 6. Schematic plot showing the distribution of Mesozoic volcanic arc and marine facies in the South China Sea con-
tinental margin (modified after Chen et al., 2003; G. X. Wu et al., 2007; P. Yan & Liu, 2004; D. Zhou et al., 2004).
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5. Discussion
5.1. Possible Spatial Distribution of the Mesozoic Volcanic Arc and Its Tectonic Implications

In this study, comprehensive analysis work has been conducted to delineate the distribution of Mesozoic
volcanic arc in the present-day SCS margin. One of the most important evidences is the HPMA belt
(Figure 2a). High magnetic anomalies over the continental margins are most likely caused by the induced
magnetization of the volcanic arc, intrusive rocks, and/or serpentinized mantle rocks (Arkani-Hamed, 1988;
Blakely et al., 2005). In the northern SCS margin, Cenozoic synrift and postspreading igneous intrusion
occurred on an extremely small scale, and these rocks are scattered across the COT zone (P. Yan et al.,
2006; P. Yan & Liu, 2004; Q. Zhang, Wu, et al., 2014; Figure 1). Thus, rifting-inducedmagnetic anomalies should
be small scale, high frequency, and isolated. However, in the northern SCS margin there develops broad and
intense anomaly belts. The contribution from the intrusive rocks is insufficient to generate these prominent
magnetic patterns. Moreover, the belts concentrate along the upper slope of the northern SCS margin do not
correlate with the location of intrusive rocks. In addition, the high-frequency anomalies caused by synrift and
postspreading igneous intrusion are removed after upward continuation to 40 km. The signals preserved in
the Figure 2c are thus low frequency. The results from power spectrum show that the low-frequency signals
likely originate from the lower crust. Therefore, the anomalies in Figure 2c are not related to recent intrusive
rocks. For the possibility of serpentinized mantle rocks, petrologic models suggest that serpentinized mantle
rocks are consequences of hydration (Lundin & Doré, 2011). In the SCS margin, although the throughgoing
crustal faults extend downward into the Moho unconformity in the COT (e.g., Dong et al., 2014; Hayes

Figure 7. Seismic profiles (a) ec00-1747 and (b) 07ns-6, with a simplified stratigraphic sequence scheme of Chaoshan
Depression listed in the right of the profile (modified after Shao et al., 2007; M. S. Zhao et al., 2012, J. Zhang, Sun, et al.,
2014; C. F. Li et al., 2008 and the data of the CNOOC). The location of the drilling well LF35-1-1 is shown on the profile ec00-
1747. TWTT = two-way travel time. See Figure 6 for its location.
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et al., 1995; Y. Zhao et al., 2018), the upper slope and the continental shelf
are characterized by a series of dense faults with northward dip only offset
the basement (e.g., Dong et al., 2014; Y. Zhao et al., 2018). The average
crustal thickness of the slope is larger than 20 km, which makes it difficult
for water to arrive at the mantle. Such conditions are not conducive to the
formation of serpentinized mantle rocks. Moreover, there is no evidence
for the exhumation and exposure, or near exposure, of serpentinized
continental mantle lithosphere on the slope. For these reasons, the effect
of serpentinized mantle rocks is not considered in this study. Therefore,
the sources of the HPMA belts most likely originate from the Mesozoic
volcanic arc.

The average source depths for the magmatic arc are well consistent with
the results imaged by deep seismic profiles (Wan et al., 2017). Previous
studies have developed general models for the vertical integral of
magnetization along the crustal section by assigning constant
magnetization values to the magnetic crust (Mayhew et al., 1991). The
results show that the lower crust may be more magnetic than the upper
crust but not considerably (Mayhew et al., 1991). As such, our estimated
roots of the volcanic arc may have a strong magnetization and can be

viewed as the possible sources of the anomalies. To test whether the source depths can induce the
corresponding anomaly, we further conducted magnetic modeling along a profile across the HPMA belt.
Deep seismic studies have already estimated the deep structure and geometry of this profile (Wei et al.,
2011). On the basis of magnetic susceptibility measurements of samples from the northern SCS margin,
the susceptibility of sedimentary rocks varies between 0 and 100 × 10�6 SI units, which are nonmagnetic
or extremely weakly magnetic (Hao et al., 2009; Lang et al., 2011; Ubangoh et al., 2005). Based on above
information, we assign a constant magnetization to each block. The values for sediment, upper crust, lower
crust, and magmatic body are 0, 3, 4, and 9 e�1 A/m, respectively (Hao et al., 2011; Hu et al., 2008). The
boundary effect is removed by extending the model domain outward by 200 km on each side. As shown in
Figure 8, the major magmatic body extends 60 km laterally at the depths of 18–24 km in a direction consis-
tent with the spatial variations of the observed magnetic anomaly. Therefore, the magnetic field of such a
body can produce the amplitude of the observed anomaly.

In comparison with previous studies, our interpretation on the northern SCS margin is constrained by more
pieces of petrological evidence. The results confirm that the high-amplitude magnetic anomaly belt in the
north corresponds well to the Mesozoic volcanic arc. We also identify the spatial distribution of the
Mesozoic volcanic arc in the south by analyzing themagnetic characteristics and newly collected petrological
evidence. From the reconstruction results, we infer that the southwest part of the Mesozoic volcanic arc
distributes on both sides of the southwest SCS subbasin, whereas the northeast part remains nearly in its
original location, crossing the central PRMB and extending southwestward to the Zhongsha (Macclesfield
Bank) and Xisha Islands (Paracel Islands; Figure 9a). Although the result can be further validated by more
pieces of evidence, it is by far the most comprehensive work to answer how the Mesozoic volcanic arc
distributes in the present-day SCS continental margin.

In view of the Cenozoic tectonic evolution, the spatial distribution of Mesozoic volcanic arc has been
disturbed by the breakup of the SCS margin in the Cenozoic. Two conjugate patterns have been proposed
to explain the drifting of the southern continental margin from the South China block. Taylor and Hayes
(1983) and Franke et al. (2008) suggested that the Reed Bank on the southern SCS margin and the PRMB
on the northern SCS margin are conjugate margins according to spreading direction perpendicular to the
spreading center (Figure 9a). Alternately, the Reed Bank may be connected to the Zhongsha (Macclesfield
Bank) and Xisha Islands (Paracel Islands) based on breakup unconformity and crustal structure (C. F. Li
et al., 2014; Z. Sun et al., 2009; Qiu et al., 2011). To join the scattered Mesozoic arc together, we close the
southwest, northwest, and east subsea basins following the two conjugate patterns (Figures 9b and 9c).
The results showed that if we move the Reed Bank back to the PRMB, several parts of separated volcanic
arc moved away from their original locations and lied within the forearc area abruptly (Figure 9b). By
definition the arc rocks cannot lie within the forearc, so the Reed Bank may not connect with the PRMB

Figure 8. Magnetic modeling along the OBS2006-3 profile. See Figure 2a for
its location.
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before breakup. On the other hand, if we move the Reed Bank back to the Zhongsha (Macclesfield Bank) and
Xisha Islands (Paracel Islands), the scattered Mesozoic volcanic arc joined well and trend NE-SW. The joined
arc is parallel with the volcanic arc belt onshore and has shape similar to that of the conclusion of Morley
(2012) and Taylor and Hayes (1983; Figures 1 and 9c), who used the terrestrial arc-related magmatism to
infer the distribution of the Mesozoic arc. These well support that the Reed Bank is connected with the
Zhongsha (Macclesfield Bank) and Xisha Islands (Paracel Islands) before breakup, which is on the other
side of the southwest subbasin.

By comparing the distribution of Mesozoic volcanic arc in present-day SCS margin and before 33 Ma, it is
natural to infer that the southwest part of the Mesozoic arc has been split by the spreading of the southwest
subbasin, which retains the northern half along the northern boundary of the southwest subsea basin,
whereas the southern half is located along the southern boundary of the sea basin and near the
Dangerous Ground, as well as the Reed Bank (Figure 9c). The arcs may have been stretched and/or broken
into segments during the opening of the southwest subbasin and moved southward to Borneo with the

Figure 9. Models for the distribution of the Late Mesozoic arc at (a) present and (b, c) before opening of the South China
Sea basin. Two different conjugate patterns are shown in green and yellow double-headed arrows. Figure 9b shows the
results of joining the Reed Bank and the PRMB, and Figure 9c shows the result of joining the Reed Bank and the Zhongsha
(Macclesfield Bank; ZS Ids). Denotations are the same as those in Figure 1. RB = Reed Bank; PRMB = Pearl River Mouth Basin.
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Dangerous Ground and Reed Bank. Therefore, the process may produce less continuous magnetic anomaly
as observed in our study. By contrast, the northeastern part of the Mesozoic arc remains nearly in its original
location, although slightly bit stretched, suggesting that the opening of the SCS basin occurred south of the
Mesozoic arc (e.g., forearc zone). Generally, the forearc spans over 250 km in width, such as the Sumatra and
Mariana forearcs (Noda, 2016; Stern & Smoot, 1998). The Mesozoic forearc zone in the SCS margin has been
stretched dramatically since the Oligocene, and its width has been increased accordingly. During the
opening of SCS, the forearc extends over a large scale and eventually breaks apart. As the extension proceeds,
the southern half of the forearc continues to drift southward, forming the present-day north Palawan block.
The north Palawan block, characterized by juxtaposed chert-clastic sequences and limestone blocks in an
imbricate manner, features the off-scrape accretion of oceanic sediments from the subduction of
Paleo-Pacific plate during Jurassic-Early Cretaceous (Holloway, 1982; Maruyama et al., 1997; Zamoras &
Matsuoka, 2004). Similar to the implication from our model, plate tectonic reconstruction also demonstrates
that the opening of the SCS basin pushed the forearc-related north Palawan block southward from the
northeast SCS margin, and this southbound migration ceased during the Middle Miocene when it collided
with the Philippine Island arc (Holloway, 1982; Zamoras & Matsuoka, 2004).

Hence, the locus of breakup may differ in the southwest and northeast SCS continental margins during the
opening of the SCS basin. In other words, the SCS basin has been formed by breaking the arc area in the
southwest and forearc area in the northeast.

5.2. Favorable Conditions for the Varied Initial Breakup Sites in the SCS Margin

Similar to the Vanuatu rifting system (Maillet et al., 1995), the SCS margin also has a varied breakup locus,
breaking forearc in the northeast and then propagating into the volcanic arc in the southwest. It is easy to
start a rift along the arc because the arc itself generally show characteristics of heat, melt, and locally
thickened crust due to the continuous magmatism upwelling and corner flow, all of which reduce the
lithospheric strength (Kusznir & Park, 1987). Development of rift along the arc area is also very common in
nature. For example, the Miocene Mariana volcanic arc has been split into two parts, the currently active
Mariana arc and the inactive West Mariana Ridge, which are separated by the Mariana Trough (e.g., Stern
et al., 2003). Similarly, in the SCS margin, a rheologically weak zone can be expected beneath the belt of
the Late Mesozoic volcanic arc, reducing the rheological strength of lithosphere (Ferno & Brian, 2006) and
further attracting strain localization and onset of failure during the Cenozoic extension (Kogan et al., 2012).
Although a number of hypotheses have been proposed for the Cenozoic extensional force (e.g., Briais
et al., 1993; Cullen et al., 2010; Lei et al., 2009; Stern & Bloomer, 1992; Tapponnier et al., 1982), they do not
prevent the Mesozoic volcanic arc from being a preferential breakup site during the Cenozoic rifting.

Initial breakup can also occur within the forearc when a corner flow migrates beneath the vicinity of forearc,
where the yield strength of the lithosphere decreases due to continuous heating (Ferno & Brian, 2006). The
possibility of forearc breakup can be enhanced in many cases, especially if a preexisting tectonically weak
zone is present because the weak zone is effective to localize deformation (Kogan et al., 2012; Li et al.,
2018). In the northeastern SCS continental margin, several strong reflectors are recognized in the COT of
the East Sub-Sea Basin according to deep seismic studies and analysis of geophysical characteristics (Ding
& Li, 2011; Huang et al., 2005; Schlüter et al., 1996a). These reflectors are interpreted as deep-rooted faults
(throughgoing faults) and formed by extension during the rollback of the Paleo-Pacific in the Late Jurassic
(Lu et al., 2015). Most of the faults strike NE-NEE, dipping into the Moho and tending to weaken the
continental margin (Dong et al., 2014; Franke et al., 2011). Thereby, the fractured forearc in the northeast
SCS margin is easily evolved into the favored site of the initial breakup. In contrast, although complicated
fault systems existed in the northwest SCS margin, these faults are mainly activated from 40 to 23 Ma and
did not cut through the entire crust (Y. Xie et al., 2015). Beyond that, Pre-Cenozoic tectonically weak zone
has not yet been reported in northwest. As such, the forearc in the northeast SCS margin is more likely to
break up than that in the northwest.

6. Conclusions

In summary, we conduct a comprehensive analysis to infer the possible distribution of the Mesozoic volcanic
arc in the SCS continental margin using petrological evidence, magnetic anomaly, data of depositional
environment, and seismic profiles. Our results show that the southwest part of the Mesozoic volcanic arc is
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distributed on both sides of the southwest SCS subbasin, whereas the northeast part remains nearly in its
original location, which indicate that the initial sites of breakup for the northeast and southwest SCS
continental margin may vary during the opening of the SCS basin. The results help us not only infer that
the opening of the SCS basins has broken the arc area in the southwest and the forearc area in the northeast
but also solve the puzzle of the conjugate pattern of the continental margins around the SCS.
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